IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/28176.html
   My bibliography  Save this paper

Asymmetric Baxter-King filter

Author

Listed:
  • Buss, Ginters

Abstract

The paper proposes an extension of the symmetric Baxter-King band pass filter to an asymmetric Baxter-King filter. The optimal correction scheme of the ideal filter weights is the same as in the symmetric version, i.e, cut the ideal filter at the appropriate length and add a constant to all filter weights to ensure zero weight on zero frequency. Since the symmetric Baxter-King filter is unable to extract the desired signal at the very ends of the series, the extension to an asymmetric filter is useful whenever the real time estimation is needed. The paper uses Monte Carlo simulation to compare the proposed filter's properties in extracting business cycle frequencies to the ones of the original Baxter-King filter and Christiano-Fitzgerald filter. Simulation results show that the asymmetric Baxter-King filter is superior to the asymmetric default specification of Christiano-Fitzgerald filter in real time signal extraction exercises.

Suggested Citation

  • Buss, Ginters, 2011. "Asymmetric Baxter-King filter," MPRA Paper 28176, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:28176
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/28176/1/MPRA_paper_28176.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    2. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    3. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    4. Alain Guay & Pierre Saint-Amant, 2005. "Do the Hodrick-Prescott and Baxter-King Filters Provide a Good Approximation of Business Cycles?," Annals of Economics and Statistics, GENES, issue 77, pages 133-155.
    5. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kufenko, Vadim, 2016. "Spurious periodicities in cliometric series: Simultaneous testing," Violette Reihe: Schriftenreihe des Promotionsschwerpunkts "Globalisierung und Beschäftigung" 48/2016, University of Hohenheim, Carl von Ossietzky University Oldenburg, Evangelisches Studienwerk.
    2. Ladislava Issever Grochová & Petr Rozmahel, 2015. "On the Ideality of Filtering Techniques in the Business Cycle Analysis Under Conditions of European Economy," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(3), pages 915-926.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faria, Gonçalo & Verona, Fabio, 2020. "The yield curve and the stock market: Mind the long run," Journal of Financial Markets, Elsevier, vol. 50(C).
    2. Lubik, Thomas A. & Matthes, Christian & Verona, Fabio, 2019. "Assessing U.S. aggregate fluctuations across time and frequencies," Research Discussion Papers 5/2019, Bank of Finland.
    3. Luca Benati, 2001. "Band-pass filtering, cointegration, and business cycle analysis," Bank of England working papers 142, Bank of England.
    4. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    5. Tatsuma Wada & Pierre Perron, 2006. "State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2006-029, Boston University - Department of Economics.
    6. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," National Institute of Economic and Social Research (NIESR) Discussion Papers 342, National Institute of Economic and Social Research.
    7. Hansen, G.D. & Ohanian, L.E., 2016. "Neoclassical Models in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2043-2130, Elsevier.
    8. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    9. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    10. Velimir Šonje & Igeta Vrbanc, 2000. "Measuring the Similarities of Economic Developments in Central Europe: A Correlation between the Business Cycles of Germany, Hungary, the Czech Republic and Croatia," Working Papers 3, The Croatian National Bank, Croatia.
    11. David E. Giles & Chad N. Stroomer, 2004. "Identifying the Cycle of a Macroeconomic Time-Series Using Fuzzy Filtering," Econometrics Working Papers 0406, Department of Economics, University of Victoria.
    12. Moisa Altar & Ciprian Necula & Gabriel Bobeica, 2009. "A Robust Assessment of the Romanian Business Cycle," Advances in Economic and Financial Research - DOFIN Working Paper Series 28, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    13. Julien Champagne & Guillaume Poulin‐Bellisle & Rodrigo Sekkel, 2018. "The Real‐Time Properties of the Bank of Canada's Staff Output Gap Estimates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1167-1188, September.
    14. João Valle e Azevedo, 2007. "Interpretation of the Effects of Filtering Integrated Time Series," Working Papers w200712, Banco de Portugal, Economics and Research Department.
    15. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    16. Kaloyan Ganev, 2004. "Statistical estimates of the deviations from the macroeconomic potential. An application to the economy of Bulgaria," Working paper series 12004en, Agency for Economic Analysis and Forecasting.
    17. Tatsuma Wada & Pierre Perron, 2005. "An Alternative Trend-Cycle Decomposition using a State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2005-44, Boston University - Department of Economics.
    18. Rodríguez, Gabriel, 2010. "Using A Forward-Looking Phillips Curve to Estimate the Output Gap in Peru," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 6(1-2), pages 1-13, April.
    19. Carnazza, Giovanni & Liberati, Paolo & Sacchi, Agnese, 2020. "The cyclically-adjusted primary balance: A novel approach for the euro area," Journal of Policy Modeling, Elsevier, vol. 42(5), pages 1123-1145.
    20. Choudhary, Ali & Hanif, Nadim & Iqbal, Javed, 2013. "On smoothing macroeconomic time series using HP and modified HP filter," MPRA Paper 45630, University Library of Munich, Germany.

    More about this item

    Keywords

    real time estimation; Christiano-Fitzgerald filter; Monte Carlo simulation; band pass filter;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:28176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.