IDEAS home Printed from
   My bibliography  Save this paper

Evaluating alternative methods for testing asset pricing models with historical data


  • Rubio, Gonzalo
  • Lozano, Martin


We follow the correct Jagannathan and Wang (2002) framework for comparing the estimates and specification tests of the classical Beta and Stochastic Discount Factor/Generalized Method of Moments (SDF/GMM) methods. We extend previous studies by considering not only single but also multifactor models, and by taking into account some of the prescriptions for improving empirical tests suggested by Lewellen, Nagel and Shanken (2009). Our results reveal that SDF/GMM first-stage estimators lead to lower pricing errors than OLS, while SDF/GMM second-stage estimators display higher pricing errors than the classical Beta GLS method. While Jagannathan and Wang (2002), and Cochrane (2005) conclude that there are no differences when estimating and testing by the Beta and SDF/GMM methods for the CAPM, we show that their conclusion can not be extensible for multifactor models. Moreover, the Beta method (OLS and GLS) seem to dominate the SDF/GMM (first and second-stage) procedure in terms of estimators’ properties. These results are consistent across benchmark portfolios and sample periods.

Suggested Citation

  • Rubio, Gonzalo & Lozano, Martin, 2009. "Evaluating alternative methods for testing asset pricing models with historical data," MPRA Paper 23613, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:23613

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Hansen, Lars Peter & Jagannathan, Ravi, 1997. " Assessing Specification Errors in Stochastic Discount Factor Models," Journal of Finance, American Finance Association, vol. 52(2), pages 557-590, June.
    3. Raymond Kan & Guofu Zhou, 1999. "A Critique of the Stochastic Discount Factor Methodology," Journal of Finance, American Finance Association, vol. 54(4), pages 1221-1248, August.
    4. Shanken, Jay & Zhou, Guofu, 2007. "Estimating and testing beta pricing models: Alternative methods and their performance in simulations," Journal of Financial Economics, Elsevier, vol. 84(1), pages 40-86, April.
    5. Loughran, Tim, 1997. "Book-to-Market across Firm Size, Exchange, and Seasonality: Is There an Effect?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(03), pages 249-268, September.
    6. Raymond Kan & Cesare Robotti & Jay Shanken, 2013. "Pricing Model Performance and the Two-Pass Cross-Sectional Regression Methodology," Journal of Finance, American Finance Association, vol. 68(6), pages 2617-2649, December.
    7. Shanken, Jay, 1992. "On the Estimation of Beta-Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 5(1), pages 1-33.
    8. Carhart, Mark M, 1997. " On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    9. Lewellen, Jonathan & Nagel, Stefan & Shanken, Jay, 2010. "A skeptical appraisal of asset pricing tests," Journal of Financial Economics, Elsevier, vol. 96(2), pages 175-194, May.
    10. Amsler, Christine E. & Schmidt, Peter, 1985. "A Monte Carlo investigation of the accuracy of multivariate CAPM tests," Journal of Financial Economics, Elsevier, vol. 14(3), pages 359-375, September.
    11. Ravi Jagannathan & Zhenyu Wang, 2002. "Empirical Evaluation of Asset-Pricing Models: A Comparison of the SDF and Beta Methods," Journal of Finance, American Finance Association, vol. 57(5), pages 2337-2367, October.
    12. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    13. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    14. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    15. Grauer, Robert R. & Janmaat, Johannus A., 2009. "On the power of cross-sectional and multivariate tests of the CAPM," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 775-787, May.
    16. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. " Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Klein, Rudolf F. & Chow, Victor K., 2013. "Orthogonalized factors and systematic risk decomposition," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(2), pages 175-187.
    2. Chou, Pin-Huang & Ho, Po-Hsin & Ko, Kuan-Cheng, 2012. "Do industries matter in explaining stock returns and asset-pricing anomalies?," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 355-370.
    3. Ferreira, Eva & Gil-Bazo, Javier & Orbe, Susan, 2011. "Conditional beta pricing models: A nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3362-3382.

    More about this item


    Beta Pricing Models; Stochastic Discount Factor; Pricing Errors; Evaluation of Factor Models.;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:23613. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.