IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimation of Peaked Densities Over the Interval [0,1] Using Two-Sided Power Distribution: Application to Lottery Experiments

Listed author(s):
  • Kontek, Krzysztof

This paper deals with estimating peaked densities over the interval [0,1] using two-sided power distribution (Kotz, van Dorp, 2004). Such data were encountered in experiments determining certainty equivalents of lotteries (Kontek, 2010). This paper summarizes the basic properties of the two-sided power distribution (TP) and its generalized form (GTP). The GTP maximum likelihood estimator, a result not derived by Kotz and van Dorp, is presented. The TP and GTP are used to estimate certainty equivalent densities in two data sets from lottery experiments. The obtained results show that even a two-parametric TP distribution provides more accurate estimates than the smooth three-parametric generalized beta distribution GBT (Libby, Novick, 1982) in one of the considered data sets. The three-parametric GTP distribution outperforms GBT for these data. The results are, however, the very opposite for the second data set, in which the data are greatly scattered. The paper demonstrates that the TP and GTP distributions may be extremely useful in estimating peaked densities over the interval [0,1] and in studying the relative utility function.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 22378.

in new window

Date of creation: 28 Apr 2010
Handle: RePEc:pra:mprapa:22378
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Kontek, Krzysztof, 2010. "Density Based Regression for Inhomogeneous Data: Application to Lottery Experiments," MPRA Paper 22268, University Library of Munich, Germany.
  2. Ulrich Schmidt & Stefan Traub, 2009. "An Experimental Investigation of the Disparity Between WTA and WTP for Lotteries," Theory and Decision, Springer, vol. 66(3), pages 229-262, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22378. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.