IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Assesing demand in stochastic locational planning problems: An Artificial Intelligence approach for emergency service systems

Listed author(s):
  • Photis, Yorgos N.
  • Grekoussis, George

The efficiency of emergency service systems is measured in terms of their ability to deploy units and personnel in a timely and effective manner upon an event’s occurrence. Aiming to exploit stochastic demand, spatial tracing and location analysis of emergency incidents are examined through the utilisation of Artificial Intelligence in two interacting levels. Firstly, spatio-temporal point pattern of demand is analysed by a new genetic algorithm. The proposed genetic algorithm interrelates sequential events formulating moving events and as a result, every demand point pattern is correlated both to previous and following events. Secondly, the approach provides the ability to predict, by means of neural networks optimised by genetic algorithms, how the pattern of demand will evolve and thus location of supplying centres and/or vehicles can be optimally defined. Neural networks provide the basis for a spatio-temporal clustering of demand, definition of the relevant centres, formulation of possible future states of the system and finally, definition of locational strategies for the improvement of the provided services.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 20678.

in new window

Date of creation: 2003
Publication status: Published in Conference Proceedings of the 2005 Conference on Computers in Urban Planning and Urban Management (CUPUM 05) 05.373(2003): pp. 1-16
Handle: RePEc:pra:mprapa:20678
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20678. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.