IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa06p910.html
   My bibliography  Save this paper

Spatio-Temporal Point Pattern Analysis Using Genetic Algorithms

Author

Listed:
  • Yorgos Photis
  • Yorgos Grekousis

Abstract

The effectiveness of emergency service systems is measured in terms of their ability to deploy units and personnel in a timely, and efficient manner upon an event’s occurrence. A typical methodology to deal with such a task is through the application of an appropriate location - allocation model. In such a case, however, the spatial distribution of demand although stochastic in nature and layout, when aggregated to a specific spatial reference unit, appears to be spatially structured or semi – structured. Aiming to exploit the above incentive, the spatial tracing and analysis of emergency incidents is achieved through the utilisation of Artificial Intelligence. More specifically, in the proposed approach, each location problem is dealt with at two interacting levels. Firstly, spatio-temporal point pattern of demand is analysed over time by a new genetic algorithm. The proposed genetic algorithm interrelates sequential events formulating moving objects and as a result, every demand point pattern is correlated both to previous and following events. Secondly, the approach provides the ability to predict, by means of an artificial neural network, how the pattern of demand will evolve and thus the location of supplying centres and/or vehicles can be optimally defined. The proposed neural network is also optimised through genetic algorithms. The approach is applied to Athens Metropolitan Area and the data come from Fire Department’s records for the years 2003-2004.

Suggested Citation

  • Yorgos Photis & Yorgos Grekousis, 2006. "Spatio-Temporal Point Pattern Analysis Using Genetic Algorithms," ERSA conference papers ersa06p910, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa06p910
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa06/papers/910.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jossef Perl & Peng-Kuan Ho, 1990. "Public Facilities Location under Elastic Demand," Transportation Science, INFORMS, vol. 24(2), pages 117-136, May.
    2. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    3. LEDERER, Philip J. & THISSE, Jacques-François, 1990. "Competitive location on networks under delivered pricing," LIDAM Reprints CORE 893, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konur, Dinçer & Geunes, Joseph, 2012. "Competitive multi-facility location games with non-identical firms and convex traffic congestion costs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 373-385.
    2. Photis, Yorgos N. & Grekoussis, George, 2003. "Assesing demand in stochastic locational planning problems: An Artificial Intelligence approach for emergency service systems," MPRA Paper 20678, University Library of Munich, Germany.
    3. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    4. Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
    5. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Madadi, AliReza & Kurz, Mary E. & Mason, Scott J. & Taaffe, Kevin M., 2014. "Supply chain design under quality disruptions and tainted materials delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 105-123.
    7. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    8. Fang Lu & John J. Hasenbein & David P. Morton, 2016. "Modeling and Optimization of a Spatial Detection System," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 512-526, August.
    9. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    10. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    11. Peng Wu & Ying Jin & Yongjiang Shi, 2011. "The impacts of carbon emissions on global manufacturing value chain relocation: Theoretical and empirical development of a meso-level model," ERSA conference papers ersa11p1724, European Regional Science Association.
    12. Correia, Isabel & Melo, Teresa, 2019. "Dynamic facility location problem with modular capacity adjustments under uncertainty," Technical Reports on Logistics of the Saarland Business School 17, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    13. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    14. Luís M. Fernandes & Joaquim J. Júdice & Hanif D. Sherali & António P. Antunes, 2011. "Siting and Sizing of Facilities under Probabilistic Demands," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 420-440, May.
    15. Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Locating a bioenergy facility using a hybrid optimization method," International Journal of Production Economics, Elsevier, vol. 123(1), pages 196-209, January.
    16. Cevriye Gencer & Emel Kizilkaya Aydogan & Coskun Celik, 2008. "A decision support system for locating VHF/UHF radio jammer systems on the terrain," Information Systems Frontiers, Springer, vol. 10(1), pages 111-124, March.
    17. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    18. Stephanie A. Snyder & Robert G. Haight, 2016. "Application of the Maximal Covering Location Problem to Habitat Reserve Site Selection," International Regional Science Review, , vol. 39(1), pages 28-47, January.
    19. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    20. Gang Chen & Mark S. Daskin & Zuo‐Jun Max Shen & Stanislav Uryasev, 2006. "The α‐reliable mean‐excess regret model for stochastic facility location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(7), pages 617-626, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa06p910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.