IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1172.html
   My bibliography  Save this paper

Estimation of Zellner-Revankar Production Function Revisited

Author

Abstract

Arnold Zellner and Nagesh Revankar in their well-known paper “Generalized Production Functions” [The Review of Economic Studies, 36(2), pp. 241-250, 1969] introduced a new generalized production function, which was illustrated by an example of fitting the generalized Cobb-Douglas function to the U.S. data for Transportation Equipment Industry. For estimating the parameters of their production function, they used a method in which one of the parameters (theta) is chosen at the trial basis and other parameters relating to elasticity and returns to scale are estimated so as to maximize the likelihood function. Repeated trials are made with different values of theta so as to obtain the global maximum of the likelihood function. In this paper we show that the method suggested and used by Zellner and Revankar (ZR) may easily be caught into a local optimum trap. We also show that the estimated parameters reported by them are grossly sub-optimal. Using the Differential Evolution (DE) and the Repulsive Particle Swarm (RPS) methods of global optimization, the present paper re-estimates the parameters of the ZR production function with the U.S. data used by ZR. We find that the DE and the RPS estimates of parameters are significantly different from (but much better than) those estimated by ZR. We also find that the returns to scale do not vary with the size of output as reported by ZR.

Suggested Citation

  • Mishra, SK, 2006. "Estimation of Zellner-Revankar Production Function Revisited," MPRA Paper 1172, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1172
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1172/1/MPRA_paper_1172.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/3001/1/MPRA_paper_3001.pdf
    File Function: revised version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. SK Mishra, 2007. "Estimation of Zellner-Revankar Production Function Revisited," Economics Bulletin, AccessEcon, vol. 3(14), pages 1-7.
    2. Mishra, SK, 2006. "Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions," MPRA Paper 1005, University Library of Munich, Germany.
    3. Mishra, SK, 2006. "A Note on Numerical Estimation of Sato’s Two-Level CES Production Function," MPRA Paper 1019, University Library of Munich, Germany, revised 02 Dec 2006.
    4. A. Zellner & N. S. Revankar, 1969. "Generalized Production Functions," Review of Economic Studies, Oxford University Press, vol. 36(2), pages 241-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SK Mishra, 2007. "Estimation of Zellner-Revankar Production Function Revisited," Economics Bulletin, AccessEcon, vol. 3(14), pages 1-7.
    2. S K Mishra, 2007. "Globalization and Structural Changes in the Indian Industrial Sector: An Analysis of Production Functions," The IUP Journal of Managerial Economics, IUP Publications, vol. 0(4), pages 56-81, November.
    3. repec:ebl:ecbull:v:3:y:2007:i:14:p:1-7 is not listed on IDEAS

    More about this item

    Keywords

    Zellner-Revankar production function; maximum likelihood; global optimization; Repulsive Particle Swarm; Differential Evolution; U.S. Data; Transport Equipment Industry; variable Returns to scale; sub-optimality;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1172. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.