My bibliography  Save this article

# (Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method

Listed:
• S. K. Mishra

## Abstract

Rank-ordering of individuals or objects on multiple criteria has many important practical applications. A reasonably representative composite rank ordering of multi-attribute objects/individuals or multi-dimensional points is often obtained by the Principal Component Analysis, although much inferior but computationally convenient methods also are frequently used. However, such rank ordering - even the one based on the Principal Component Analysis - may not be optimal. This has been demonstrated by several numerical examples. To solve this problem, the Ordinal Principal Component Analysis was suggested some time back. However, this approach cannot deal with various types of alternative schemes of rank ordering, mainly due to its dependence on the method of solution by the constrained integer programming. In this paper we propose an alternative method of solution, namely by the Particle Swarm Optimization. A computer program in FORTRAN to solve the problem has also been provided. The suggested method is notably versatile and can take care of various schemes of rank ordering, norms and types or measures of correlation. The versatility of the method and its capability to obtain the most representative composite rank ordering of multi-attribute objects or multi-dimensional points have been demonstrated by several numerical examples. It has also been found that rank ordering based on maximization of the sum of absolute values of the correlation coefficients of composite rank scores with its constituent variables has robustness, but it may have multiple optimal solutions. Thus, while it solves the one problem, it gives rise to the other problem. The overall ranking of objects by maximin correlation principle performs better if the composite rank scores are obtained by direct optimization with respect to the individual ranking scores.

## Suggested Citation

• S. K. Mishra, 2010. "(Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(2), pages 165-200.
• Handle: RePEc:jqe:jqenew:v:8:y:2010:i:2:p:165-200
as

## Download full text from publisher

File URL: http://www.jqe.co.in/journals/JQE_v8_n2_2010_p11.pdf
Download Restriction: no

## References listed on IDEAS

as
1. Korhonen, Pekka & Siljamaki, Aapo, 1998. "Ordinal principal component analysis theory and an application," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 411-424, February.
2. Mishra, SK, 2006. "Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions," MPRA Paper 1005, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

## More about this item

### Statistics

Access and download statistics

## Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jqe:jqenew:v:8:y:2010:i:2:p:165-200. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (D. M. Nachane) or (). General contact details of provider: http://edirc.repec.org/data/tiesoea.html .

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.