IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

(Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method

Listed author(s):
  • S. K. Mishra

Rank-ordering of individuals or objects on multiple criteria has many important practical applications. A reasonably representative composite rank ordering of multi-attribute objects/individuals or multi-dimensional points is often obtained by the Principal Component Analysis, although much inferior but computationally convenient methods also are frequently used. However, such rank ordering - even the one based on the Principal Component Analysis - may not be optimal. This has been demonstrated by several numerical examples. To solve this problem, the Ordinal Principal Component Analysis was suggested some time back. However, this approach cannot deal with various types of alternative schemes of rank ordering, mainly due to its dependence on the method of solution by the constrained integer programming. In this paper we propose an alternative method of solution, namely by the Particle Swarm Optimization. A computer program in FORTRAN to solve the problem has also been provided. The suggested method is notably versatile and can take care of various schemes of rank ordering, norms and types or measures of correlation. The versatility of the method and its capability to obtain the most representative composite rank ordering of multi-attribute objects or multi-dimensional points have been demonstrated by several numerical examples. It has also been found that rank ordering based on maximization of the sum of absolute values of the correlation coefficients of composite rank scores with its constituent variables has robustness, but it may have multiple optimal solutions. Thus, while it solves the one problem, it gives rise to the other problem. The overall ranking of objects by maximin correlation principle performs better if the composite rank scores are obtained by direct optimization with respect to the individual ranking scores.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by The Indian Econometric Society in its journal Journal of Quantitative Economics.

Volume (Year): 8 (2010)
Issue (Month): 2 ()
Pages: 165-200

in new window

Handle: RePEc:jqe:jqenew:v:8:y:2010:i:2:p:165-200
Contact details of provider: Web page:

More information through EDIRC

Order Information: Postal: Managing Editor, Journal of Quantitative Economics, Indira Gandhi Institute of Development Research (IGIDR), Gen. A.K. Vaidya Marg, Goregaon (E), Mumbai 400 065 , INDIA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Korhonen, Pekka & Siljamaki, Aapo, 1998. "Ordinal principal component analysis theory and an application," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 411-424, February.
  2. Mishra, SK, 2006. "Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions," MPRA Paper 1005, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jqe:jqenew:v:8:y:2010:i:2:p:165-200. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (D. M. Nachane)

or ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.