IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/15085.html
   My bibliography  Save this paper

Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact

Author

Abstract

By filtering wavelet coefficients, it is possible to construct a good estimate of a pure signal from noisy data. Especially, for a simple linear noise influence, Donoho and Johnstone (1994) have already defined an optimal filter design in the sense of a good reconstruction of the pure signal. We set here a different framework where the influence of the noise is non-linear. In particular, we propose an optimal method to filter the wavelet coefficients of a discrete dynamical system disrupted by a weak noise, in order to construct good estimates of the pure signal, including Bayes' estimate, minimax estimate, oracular estimate or thresholding estimate. We present the example of a simple chaotic dynamical system as well as an adaptation of our technique in order to show empirically the robustness of the thresholding method in presence of leptokurtic noise. Moreover, we test both the hard and the soft thresholding and also another kind of smoother thresholding which seems to have almost the same reconstruction power as the hard thresholding

Suggested Citation

  • Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:15085
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2015/15085.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Christophe Chorro & Dominique Guégan & Florian Ielpo, 2012. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1079-1094, April.
    2. Bosq, D. & Guégan, D., 1995. "Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system," Statistics & Probability Letters, Elsevier, vol. 25(3), pages 201-212, November.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. J. Bardet & G. Lang & E. Moulines & P. Soulier, 2000. "Wavelet Estimator of Long-Range Dependent Processes," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 85-99, January.
    5. D. Bosq & Dominique Guegan, 1995. "Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system," Post-Print halshs-00199345, HAL.
    6. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    wavelets; dynamical systems; chaos; Gaussian noise; Cauchy noise; thresholding; nonequispaced design; non-linear noise impact;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:15085. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label). General contact details of provider: http://edirc.repec.org/data/cenp1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.