IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Cost Allocation and Convex Data Envelopment

  • Jens Leth Hougaard

    (Department of Economics, University of Copenhagen)

  • Jørgen Tind

    (Department of Mathematical Sciences, University of Copenhagen)

This paper considers allocation rules. First, we demonstrate that costs allocated by the Aumann-Shapley and the Friedman-Moulin cost allocation rules are easy to determine in practice using convex envelopment of registered cost data and parametric programming. Second, from the linear programming problems involved it becomes clear that the allocation rules, technically speaking, allocate the non-zero value of the dual variable for a convexity constraint on to the output vector. Hence, the allocation rules can also be used to allocate inefficiencies in non-parametric efficiency measurement models such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output) variables and hence enable a full allocation of the inefficiency on to the input (or output) variables as in the CCR model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.ku.dk/english/research/publications/wp/2008/0801.pdf/
Download Restriction: no

Paper provided by University of Copenhagen. Department of Economics in its series Discussion Papers with number 08-02.

as
in new window

Length: 17 pages
Date of creation: Jan 2008
Date of revision:
Handle: RePEc:kud:kuiedp:0802
Contact details of provider: Postal: Øster Farimagsgade 5, Building 26, DK-1353 Copenhagen K., Denmark
Phone: (+45) 35 32 30 10
Fax: +45 35 32 30 00
Web page: http://www.econ.ku.dk
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter Bogetoft, 1996. "DEA on Relaxed Convexity Assumptions," Management Science, INFORMS, vol. 42(3), pages 457-465, March.
  2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  3. Banker, Rajiv D & Maindiratta, Ajay, 1988. "Nonparametric Analysis of Technical and Allocative Efficiencies in Production," Econometrica, Econometric Society, vol. 56(6), pages 1315-32, November.
  4. Friedman, Eric & Moulin, Herve, 1999. "Three Methods to Share Joint Costs or Surplus," Journal of Economic Theory, Elsevier, vol. 87(2), pages 275-312, August.
  5. Cook, Wade D. & Kress, Moshe, 1999. "Characterizing an equitable allocation of shared costs: A DEA approach," European Journal of Operational Research, Elsevier, vol. 119(3), pages 652-661, December.
  6. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
  7. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
  8. Peter Bogetoft & Joseph M. Tama & Jørgen Tind, 2000. "Convex Input and Output Projections of Nonconvex Production Possibility Sets," Management Science, INFORMS, vol. 46(6), pages 858-869, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:0802. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Hoffmann)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.