IDEAS home Printed from https://ideas.repec.org/p/keo/dpaper/2017-020.html
   My bibliography  Save this paper

Semiparametric Quasi-Bayesian Inference with Dirichlet Process Priors: Application to Nonignorable Missing Responses

Author

Listed:
  • Igari Ryosuke

    (Graduate School of Economics, Keio University)

  • Takahiro Hoshino

    (Faculty of Economics, Keio University)

Abstract

Quasi-Bayesian inference, in which we can use an objective function such as generalized method of moments (GMM), M-estimators, or empirical likelihoods instead of log-likelihood functions, has been studied in Bayesian statistics.However, existing quasi-Bayesian estimation methods do not incorporate Bayesian semiparametric modeling such as Dirichlet process mixtures. In this study, we propose a semiparametric quasi-Bayesian inference with Dirichlet process priors based on the method proposed by Hoshino and Igari (2017) and Igari and Hoshino (2017), which divide the objective function into likelihood function and objective function of GMM.In the proposed method, auxiliary information such as population information can be incorporated in a GMM-type function,whereas the likelihood function is expressed as infinite mixtures.In the resulting Markov chain Monte Carlo (MCMC) algorithm, the GMM-type objective function is considered in the Metropolis Hastings algorithm in the blocked Gibbs sampler. For illustrative purposes, we apply the proposed estimation method to the missing data analysis with nonignorable responses, in which the missingness depends on the dependent variable.We show the performance of our model using a simulation study.

Suggested Citation

  • Igari Ryosuke & Takahiro Hoshino, 2017. "Semiparametric Quasi-Bayesian Inference with Dirichlet Process Priors: Application to Nonignorable Missing Responses," Keio-IES Discussion Paper Series 2017-020, Institute for Economics Studies, Keio University.
  • Handle: RePEc:keo:dpaper:2017-020
    as

    Download full text from publisher

    File URL: https://ies.keio.ac.jp/upload/pdf/en/DP2017-020.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    2. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    3. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    2. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    3. Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
    4. Calcagno, R. & Renneboog, L.D.R., 2004. "Capital Structure and Managerial Compensation : The Effects of Renumeration Seniority," Discussion Paper 2004-120, Tilburg University, Center for Economic Research.
    5. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    6. Marina Rybalka, 2015. "The innovative input mix. Assessing the importance of R&D and ICT investments for firm performance in manufacturing and services," Discussion Papers 801, Statistics Norway, Research Department.
    7. T.R.L. Fry & R.D. Brooks & Br. Comley & J. Zhang, 1993. "Economic Motivations for Limited Dependent and Qualitative Variable Models," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 193-205, June.
    8. Greg Kaplan, 2012. "Inequality and the life cycle," Quantitative Economics, Econometric Society, vol. 3(3), pages 471-525, November.
    9. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    10. Alfred Michael Dockery & Mark N. Harris & Nicholas Holyoak & Ranjodh B. Singh, 2021. "A methodology for projecting sparse populations and its application to remote Indigenous communities," Journal of Geographical Systems, Springer, vol. 23(1), pages 37-61, January.
    11. Bonciani, Dario, 2014. "Uncertainty shocks: it's a matter of habit," MPRA Paper 59370, University Library of Munich, Germany.
    12. Simplice A. Asongu & Mushfiqur Rahman & Mohammad Alghababsheh, 2022. "Information Technology, Business Sustainability and Female Economic Participation in Sub-Saharan Africa," Working Papers 22/057, European Xtramile Centre of African Studies (EXCAS).
    13. Andrés Felipe Martínez, 2006. "Determinantes de la supervivencia de empresas industriales en el área metropolitana de Cali 1994-2003," Ensayos Sobre Economía Regional (ESER) 2320, Banco de la República - Economía Regional.
    14. Cao, Lihong & Du, Yan & Hansen, Jens Ørding, 2017. "Foreign institutional investors and dividend policy: Evidence from China," International Business Review, Elsevier, vol. 26(5), pages 816-827.
    15. Noriko Amano, 2018. "Nutrition Inequality: The Role of Prices, Income, and Preferences," 2018 Meeting Papers 453, Society for Economic Dynamics.
    16. Eric Chiang & Djeto Assane, 2007. "Determinants of music copyright violations on the university campus," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 31(3), pages 187-204, September.
    17. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    18. Renneboog, L.D.R. & Szilagyi, P.G., 2009. "Shareholder Activism through the Proxy Process," Other publications TiSEM cc25d736-2965-4511-b100-1, Tilburg University, School of Economics and Management.
    19. Sebastian Heise & Justin R. Pierce & Georg Schaur & Peter K. Schott, 2024. "Tariff Rate Uncertainty and the Structure of Supply Chains," NBER Working Papers 32138, National Bureau of Economic Research, Inc.
    20. Vittorio Bassi & Raffaela Muoio & Tommaso Porzio & Ritwika Sen & Esau Tugume, 2022. "Achieving Scale Collectively," Econometrica, Econometric Society, vol. 90(6), pages 2937-2978, November.

    More about this item

    Keywords

    Dirichlet Process Mixture Model; Blocked Gibbs Sampler; GMM; Auxiliary Information; Selection Model;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:keo:dpaper:2017-020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Institute for Economics Studies, Keio University (email available below). General contact details of provider: https://edirc.repec.org/data/iekeijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.