IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp2112.html
   My bibliography  Save this paper

Calculation of Multivariate Normal Probabilities by Simulation, with Applications to Maximum Simulated Likelihood Estimation

Author

Listed:
  • Cappellari, Lorenzo

    () (Università Cattolica del Sacro Cuore)

  • Jenkins, Stephen P.

    () (London School of Economics)

Abstract

We discuss methods for calculating multivariate normal probabilities by simulation and two new Stata programs for this purpose: -mdraws- for deriving draws from the standard uniform density using either Halton or pseudo-random sequences, and an egen function -mvnp()- for calculating the probabilities themselves. Several illustrations show how the programs may be used for maximum simulated likelihood estimation.

Suggested Citation

  • Cappellari, Lorenzo & Jenkins, Stephen P., 2006. "Calculation of Multivariate Normal Probabilities by Simulation, with Applications to Maximum Simulated Likelihood Estimation," IZA Discussion Papers 2112, Institute for the Study of Labor (IZA).
  • Handle: RePEc:iza:izadps:dp2112
    as

    Download full text from publisher

    File URL: http://ftp.iza.org/dp2112.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lorenzo Cappellari & Stephen P. Jenkins, 2004. "Modelling low income transitions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 593-610.
    2. Stephane Hess & John Polak, 2003. "An alternative method to the scrambled Halton sequence for removing correlation between standard Halton sequences in high dimensions," ERSA conference papers ersa03p406, European Regional Science Association.
    3. William W. Gould & Jeffrey Pitblado & Brian Poi, 2010. "Maximum Likelihood Estimation with Stata," Stata Press books, StataCorp LP, edition 4, number ml4, April.
    4. Haan, Peter & Uhlendorff, Arne, 2006. "Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood," Stata Journal, StataCorp LP, vol. 0(Number 2), pages 1-17.
    5. Stephen P. Jenkins & Lorenzo Cappellari & Peter Lynn & Annette Jäckle & Emanuela Sala, 2006. "Patterns of consent: evidence from a general household survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 701-722.
    6. Sandor, Zsolt & Andras, P.Peter, 2004. "Alternative sampling methods for estimating multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 120(2), pages 207-234, June.
    7. repec:ags:stataj:116115 is not listed on IDEAS
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    9. Mark Stewart, 2006. "Maximum simulated likelihood estimation of random-effects dynamic probit models with autocorrelated errors," Stata Journal, StataCorp LP, vol. 6(2), pages 256-272, June.
    10. Cappellari, Lorenzo & Jenkins, Stephen P., 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LP, vol. 0(Number 3), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    pseudo-random sequences; simulation estimation; Halton sequences; multivariate probit; maximum simulated likelihood; multivariate normal; GHK simulator;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp2112. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Fallak). General contact details of provider: http://www.iza.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.