IDEAS home Printed from https://ideas.repec.org/p/inu/caeprp/2025001.html
   My bibliography  Save this paper

Understanding Regressions with Observations Collected at High Frequency over Long Span

Author

Listed:
  • Yoosoon Chang

    (Indiana University, Department of Economics)

  • Ye Lu

    (School of Economics, University of Sydney)

  • Joon Park

    (Indiana University, Department of Economics)

Abstract

In this paper, we analyze regressions with observations collected at small time intervals over a long period of time. For the formal asymptotic analysis, we assume that samples are obtained from continuous time stochastic processes, and let the sampling interval δ shrink down to zero and the sample span T increase up to infinity. In this setup, we show that the standard Wald statistic diverges to infinity and the regression becomes spurious as long as δ → 0 sufficiently fast relative to T → ∞. Such a phenomenon is indeed what is frequently observedin practice for the type of regressions considered in the paper. In contrast, our asymptotic theory predicts that the spuriousness disappears if we use the robustversion of the Wald test with an appropriate long-run variance estimate. This is supported, strongly and unambiguously, by our empirical illustration using the regression of long-term on short-term interest rates.

Suggested Citation

  • Yoosoon Chang & Ye Lu & Joon Park, 2025. "Understanding Regressions with Observations Collected at High Frequency over Long Span," CAEPR Working Papers 2025-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
  • Handle: RePEc:inu:caeprp:2025001
    as

    Download full text from publisher

    File URL: https://caepr.indiana.edu/RePEc/inu/caeprp/caepr2025-001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jihyun & Park, Joon Y., 2017. "Asymptotics for recurrent diffusions with application to high frequency regression," Journal of Econometrics, Elsevier, vol. 196(1), pages 37-54.
    2. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    2. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    3. Gourieroux, C. & Monfort, A. & Sufana, R., 2010. "International money and stock market contingent claims," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1727-1751, December.
    4. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
    5. Alexander David & Pietro Veronesi, 2014. "Investors' and Central Bank's Uncertainty Embedded in Index Options," The Review of Financial Studies, Society for Financial Studies, vol. 27(6), pages 1661-1716.
    6. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2008. "Macroeconomic determinants of stock market returns, volatility and volatility risk-premia," LSE Research Online Documents on Economics 24436, London School of Economics and Political Science, LSE Library.
    7. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2013. "Macroeconomic determinants of stock volatility and volatility premiums," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 203-220.
    8. Francesco Campigli & Gabriele Tedeschi & Maria Cristina Recchioni, 2021. "The talkative variables of the hybrid Heston model: Yields’ maturity and economic (in)stability," Working Papers 2021/03, Economics Department, Universitat Jaume I, Castellón (Spain).
    9. Bjørn Eraker, 2008. "Affine General Equilibrium Models," Management Science, INFORMS, vol. 54(12), pages 2068-2080, December.
    10. Cheng Few Lee, 2020. "Financial econometrics, mathematics, statistics, and financial technology: an overall view," Review of Quantitative Finance and Accounting, Springer, vol. 54(4), pages 1529-1578, May.
    11. Alexander David & Pietro Veronesi, 2011. "Investors' and Central Bank's Uncertainty Embedded in Index Options," NBER Working Papers 16764, National Bureau of Economic Research, Inc.
    12. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    13. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    14. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    15. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    16. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    17. Evans, Charles L. & Marshall, David A., 2007. "Economic determinants of the nominal treasury yield curve," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1986-2003, October.
    18. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    19. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    20. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.

    More about this item

    Keywords

    high frequency regression; spurious regression; continuous-time model; asymptotics; long-run variance estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inu:caeprp:2025001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Center for Applied Economics and Policy Research (email available below). General contact details of provider: https://edirc.repec.org/data/caeprus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.