IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2013-36.html
   My bibliography  Save this paper

Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications

Author

Listed:
  • Hannah Frick

    ()

  • Carolin Strobl

    ()

  • Achim Zeileis

    ()

Abstract

Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest DIF tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive to the specification of the ability distribution even when the conditional maximum likelihood approach is used. It is demonstrated in a simulation study how differences in ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF detection, it is not of interest to uncover such ability differences as one is only interested in a latent group structure regarding the item difficulties. To avoid any confounding effect of ability differences (or impact), a score distribution for the Rasch mixture model is introduced here which is restricted to be equal across latent classes. This causes the estimation of the Rasch mixture model to be independent of the ability distribution and thus restricts the mixture to be sensitive to latent structure in the item difficulties only. Its usefulness is demonstrated in a simulation study and its application is illustrated in a study of verbal aggression.

Suggested Citation

  • Hannah Frick & Carolin Strobl & Achim Zeileis, 2013. "Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications," Working Papers 2013-36, Faculty of Economics and Statistics, University of Innsbruck.
  • Handle: RePEc:inn:wpaper:2013-36
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2013-36.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Frick, Hannah & Strobl, Carolin & Leisch, Friedrich & Zeileis, Achim, 2012. "Flexible Rasch Mixture Models with Package psychomix," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i07).
    2. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    mixed Rasch model; Rasch mixture model; DIF detection; score distribution;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2013-36. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janette Walde). General contact details of provider: http://edirc.repec.org/data/fuibkat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.