IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2007-08.html
   My bibliography  Save this paper

Simultaneous probability statements for Bayesian P-splines

Author

Listed:
  • Andreas Brezger
  • Stefan Lang

Abstract

P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and generalize the concept of Bayesian contour probabilities to additive models with Gaussian or multicategorical responses. More specifically, we aim at computing the maximum credible level (sometimes called Bayesian p-value) for which a particular parameter vector of interest lies within the corresponding highest posterior density (HPD) region. We are particularly interested in parameter vectors that correspond to a constant, linear or more generally a polynomial fit. As an alternative to HPD regions simultaneous credible intervals could be used to define pseudo contour probabilities. Efficient algorithms for computing contour and pseudo contour probabilities are developed. The performance of the approach is assessed through simulation studies. Two applications on the determinants of undernutrition in developing countries and the health status of trees show how contour probabilities may be used in practice to assist the analyst in the model building process.

Suggested Citation

  • Andreas Brezger & Stefan Lang, 2007. "Simultaneous probability statements for Bayesian P-splines," Working Papers 2007-08, Faculty of Economics and Statistics, Universität Innsbruck.
  • Handle: RePEc:inn:wpaper:2007-08
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2007-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maindonald, John, 2006. "Generalized Additive Models: An Introduction with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(b03).
    2. Brezger, Andreas & Kneib, Thomas & Lang, Stefan, 2005. "BayesX: Analyzing Bayesian Structural Additive Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i11).
    3. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    6. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 11-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    2. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    3. Timothy Cogley & Argia M. Sbordone, 2006. "Trend inflation and inflation persistence in the New Keynesian Phillips curve," Staff Reports 270, Federal Reserve Bank of New York.
    4. Rodriguez, Gabriel & Castillo B., Paul & Calero, Roberto & Salcedo Cisneros, Rodrigo & Ataurima Arellano, Miguel, 2024. "Evolution of the exchange rate pass-through into prices in Peru: An empirical application using TVP-VAR-SV models," Journal of International Money and Finance, Elsevier, vol. 142(C).
    5. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    6. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    7. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    8. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.
    9. Pancras, Joseph & Gauri, Dinesh K. & Talukdar, Debabrata, 2013. "Loss leaders and cross-category retailer pass-through: A Bayesian multilevel analysis," Journal of Retailing, Elsevier, vol. 89(2), pages 140-157.
    10. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    11. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2017. "Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1248-1268, May.
    12. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    13. Gabriel Rodriguez & Paul Castillo B. & Junior A. Ojeda Cunya, 2024. "Time-Varying Effects of External Shocks on Macroeconomic Fluctuations in Peru: An Empirical Application using TVP-VAR-SV Models," Open Economies Review, Springer, vol. 35(5), pages 1015-1050, November.
    14. Themistoklis Botsas & Jonathan A. Cumming & Ian H. Jermyn, 2022. "A Bayesian multi‐region radial composite reservoir model for deconvolution in well test analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 951-968, August.
    15. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    16. Li, Jianan & Han, Xiaoyi, 2019. "Bayesian Lassos for spatial durbin error model with smoothness prior: Application to detect spillovers of China's treaty ports," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 38-74.
    17. Claudia Czado & Anette Heyn & Gernot Müller, 2011. "Modeling individual migraine severity with autoregressive ordered probit models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 101-121, March.
    18. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    19. Nicole H. Augustin & Stefan Lang & Monica Musio & Klaus Von Wilpert, 2007. "A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 29-50, January.
    20. Wang, Kai Y.K. & Chen, Cathy W.S. & So, Mike K.P., 2023. "Quantile three-factor model with heteroskedasticity, skewness, and leptokurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    More about this item

    Keywords

    Bayesian p-values; contour probabilities; generalized additive models; Rao-Blackwell estimator;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2007-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Judith Courian The email address of this maintainer does not seem to be valid anymore. Please ask Judith Courian to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.