IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i4p951-968.html
   My bibliography  Save this article

A Bayesian multi‐region radial composite reservoir model for deconvolution in well test analysis

Author

Listed:
  • Themistoklis Botsas
  • Jonathan A. Cumming
  • Ian H. Jermyn

Abstract

In petroleum well test analysis, deconvolution is used to obtain information about reservoir systems, for example the presence of heterogeneities and boundaries. This information is contained in the response function, which can be estimated by solving an inverse problem in the pressure and flow rate measurements. Our Bayesian approach to this problem is based upon a parametric physical model of reservoir behaviour, derived from the solution for fluid flow in a general class of reservoirs. This permits joint parametric Bayesian inference for both the reservoir parameters and the true pressure and rate values, which is essential due to the typical observational error levels. Using sets of flexible priors for the reservoir parameters to restrict the solution space to physical behaviours, samples from the posterior are generated using Markov Chain Monte Carlo. Summaries and visualisations of the posterior, response, and true pressure and rate values can be produced, interpreted, and model selection can be performed. The method is validated through a synthetic application, and applied to a field data set. The results are comparable to the state of the art solution, but through our method we gain access to system parameters, we can incorporate prior knowledge, and we can quantify parameter uncertainty.

Suggested Citation

  • Themistoklis Botsas & Jonathan A. Cumming & Ian H. Jermyn, 2022. "A Bayesian multi‐region radial composite reservoir model for deconvolution in well test analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 951-968, August.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:4:p:951-968
    DOI: 10.1111/rssc.12562
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12562
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    2. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    3. Timothy Cogley & Argia M. Sbordone, 2006. "Trend inflation and inflation persistence in the New Keynesian Phillips curve," Staff Reports 270, Federal Reserve Bank of New York.
    4. Rodriguez, Gabriel & Castillo B., Paul & Calero, Roberto & Salcedo Cisneros, Rodrigo & Ataurima Arellano, Miguel, 2024. "Evolution of the exchange rate pass-through into prices in Peru: An empirical application using TVP-VAR-SV models," Journal of International Money and Finance, Elsevier, vol. 142(C).
    5. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    6. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.
    7. Pancras, Joseph & Gauri, Dinesh K. & Talukdar, Debabrata, 2013. "Loss leaders and cross-category retailer pass-through: A Bayesian multilevel analysis," Journal of Retailing, Elsevier, vol. 89(2), pages 140-157.
    8. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    9. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2017. "Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1248-1268, May.
    10. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    11. Gabriel Rodriguez & Paul Castillo B. & Junior A. Ojeda Cunya, 2024. "Time-Varying Effects of External Shocks on Macroeconomic Fluctuations in Peru: An Empirical Application using TVP-VAR-SV Models," Open Economies Review, Springer, vol. 35(5), pages 1015-1050, November.
    12. Li, Jianan & Han, Xiaoyi, 2019. "Bayesian Lassos for spatial durbin error model with smoothness prior: Application to detect spillovers of China's treaty ports," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 38-74.
    13. Claudia Czado & Anette Heyn & Gernot Müller, 2011. "Modeling individual migraine severity with autoregressive ordered probit models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 101-121, March.
    14. Wang, Kai Y.K. & Chen, Cathy W.S. & So, Mike K.P., 2023. "Quantile three-factor model with heteroskedasticity, skewness, and leptokurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    15. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    16. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
    17. Hubin, Aliaksandr & Storvik, Geir, 2018. "Mode jumping MCMC for Bayesian variable selection in GLMM," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 281-297.
    18. Wichitaksorn, Nuttanan & Tsurumi, Hiroki, 2013. "Comparison of MCMC algorithms for the estimation of Tobit model with non-normal error: The case of asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 226-235.
    19. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
    20. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:4:p:951-968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.