IDEAS home Printed from
   My bibliography  Save this paper

An Alternative System GMM Estimation in Dynamic Panel Models


  • Housung Jung
  • Hyeog Ug Kwon


The system GMM estimator in dynamic panel data models which combines two moment conditions, i.e., for the differenced equation and for the model in levels, is known to be more efficient than the first-difference GMM estimator. However, an initial optimal weight matrix is not known for the system estimation procedure. Therefore, we suggest the use of 'a suboptimal weight matrix' which may reduce the finite sample bias whilst increasing its efficiency. Using the Kantorovich inequality, we find that the potential efficiency gain becomes large when the variance of individual effects increases compared to the variance of the idiosyncratic errors. (Our Monte Carlo experiments show that the small sample properties of the suboptimal system estimator are shown to be much more reliable than any other conventional system GMM estimator in terms of bias and efficiency.

Suggested Citation

  • Housung Jung & Hyeog Ug Kwon, 2007. "An Alternative System GMM Estimation in Dynamic Panel Models," Hi-Stat Discussion Paper Series d07-217, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hst:hstdps:d07-217

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Alonso-Borrego, César & Sánchez Mangas, Rocío, 2001. "GMM estimation of a production function with panel data : an application to Spanish manufacturing firms," DES - Working Papers. Statistics and Econometrics. WS ws015527, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Youssef, Ahmed H. & El-Sheikh, Ahmed A. & Abonazel, Mohamed R., 2014. "Improving the Efficiency of GMM Estimators for Dynamic Panel Models," MPRA Paper 68675, University Library of Munich, Germany.
    2. Youssef, Ahmed H. & El-Sheikh, Ahmed A. & Abonazel, Mohamed R., 2014. "New GMM Estimators for Dynamic Panel Data Models," MPRA Paper 68676, University Library of Munich, Germany.
    3. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.

    More about this item


    Dynamic panel data; sub-optimal weighting matrix; KI upper boud;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hst:hstdps:d07-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tatsuji Makino). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.