IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/29-fe-2014.html
   My bibliography  Save this paper

The Effectiveness Of Different Trading Strategies For Price-Takers

Author

Listed:
  • Liudmila G. Egorova

    () (National Research University Higher School of Economics)

Abstract

Simulation models of the stock exchange are developed to explore the dependence between a trader’s ability to predict future price movements and her wealth and probability of bankruptcy, to analyze the consequences of margin trading with different leverage rates and to compare different investment strategies for small traders. We show that in the absence of margin trading the rate of successful predictions should be slightly higher than 50% to guarantee with high probability that the final wealth is greater than the initial and to assure very little probability of bankruptcy, and such a small value explains why so many people try to trade on the stock exchange. However if trader uses margin trading, this rate should be much higher and high rate leads to the risk of excessive losses.

Suggested Citation

  • Liudmila G. Egorova, 2014. "The Effectiveness Of Different Trading Strategies For Price-Takers," HSE Working papers WP BRP 29/FE/2014, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:29/fe/2014
    as

    Download full text from publisher

    File URL: http://www.hse.ru/data/2014/04/21/1319149274/29FE2014.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    2. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    3. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
    4. Aleskerov, Fuad & Egorova, Lyudmila, 2012. "Is it so bad that we cannot recognize black swans?," Economics Letters, Elsevier, vol. 117(3), pages 563-565.
    5. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2006. "Asset price and wealth dynamics in a financial market with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1755-1786.
    6. Tedeschi, Gabriele & Iori, Giulia & Gallegati, Mauro, 2012. "Herding effects in order driven markets: The rise and fall of gurus," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 82-96.
    7. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(02), pages 170-196, June.
    8. Itzhak Venezia & Amrut Nashikkar & Zur Shapira, 2011. "Firm specific and macro herding by professional and amateur investors and their effects on market volatility," Discussion Paper Series dp586, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    9. Venezia, Itzhak & Nashikkar, Amrut & Shapira, Zur, 2011. "Firm specific and macro herding by professional and amateur investors and their effects on market volatility," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1599-1609, July.
    10. Vince Darley & Alexander V Outkin, 2007. "A NASDAQ Market Simulation:Insights on a Major Market from the Science of Complex Adaptive Systems," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6217, December.
    11. Brown, Philip & Thomson, Nathanial & Walsh, David, 1999. "Characteristics of the order flow through an electronic open limit order book," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 335-357, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    agent-based system; simulation; stock exchange; trading strategies.;

    JEL classification:

    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:29/fe/2014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamil Abdulaev) or (Victoria Elkina). General contact details of provider: http://edirc.repec.org/data/hsecoru.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.