IDEAS home Printed from https://ideas.repec.org/p/hhs/umnees/0931.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

On Specification and Inference in the Econometrics of Public Procurement

Author

Listed:

Abstract

In Paper [I] we use data on Swedish public procurement auctions for internal regular cleaning service contracts to provide novel empirical evidence regarding green public procurement (GPP) and its effect on the potential suppliers’ decision to submit a bid and their probability of being qualified for supplier selection. We find only a weak effect on supplier behavior which suggests that GPP does not live up to its political expectations. However, several environmental criteria appear to be associated with increased complexity, as indicated by the reduced probability of a bid being qualified in the postqualification process. As such, GPP appears to have limited or no potential to function as an environmental policy instrument. In Paper [II] the observation is made that empirical evaluations of the effect of policies transmitted through public procurements on bid sizes are made using linear regressions or by more involved non-linear structural models. The aspiration is typically to determine a marginal effect. Here, I compare marginal effects generated under both types of specifications. I study how a political initiative to make firms less environmentally damaging implemented through public procurement influences Swedish firms’ behavior. The collected evidence brings about a statistically as well as economically significant effect on firms’ bids and costs. Paper [III] embarks by noting that auction theory suggests that as the number of bidders (competition) increases, the sizes of the participants’ bids decrease. An issue in the empirical literature on auctions is which measurement(s) of competition to use. Utilizing a dataset on public procurements containing measurements on both the actual and potential number of bidders I find that a workhorse model of public procurements is best fitted to data using only actual bidders as measurement for competition. Acknowledging that all measurements of competition may be erroneous, I propose an instrumental variable estimator that (given my data) brings about a competition effect bounded by those generated by specifications using the actual and potential number of bidders, respectively. Also, some asymptotic results are provided for non-linear least squares estimators obtained from a dependent variable transformation model. Paper [VI] introduces a novel method to measure bidders’ costs (valuations) in descending (ascending) auctions. Based on two bounded rationality constraints bidders’ costs (valuations) are given an imperfect measurements interpretation robust to behavioral deviations from traditional rationality assumptions. Theory provides no guidance as to the shape of the cost (valuation) distributions while empirical evidence suggests them to be positively skew. Consequently, a flexible distribution is employed in an imperfect measurements framework. An illustration of the proposed method on Swedish public procurement data is provided along with a comparison to a traditional Bayesian Nash Equilibrium approach.

Suggested Citation

  • Sundström, David, 2016. "On Specification and Inference in the Econometrics of Public Procurement," Umeå Economic Studies 931, Umeå University, Department of Economics.
  • Handle: RePEc:hhs:umnees:0931
    as

    Download full text from publisher

    File URL: http://www.usbe.umu.se/digitalAssets/182/182119_ues931.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emmanuel Guerre & Isabelle Perrigne & Quang Vuong, 2000. "Optimal Nonparametric Estimation of First-Price Auctions," Econometrica, Econometric Society, vol. 68(3), pages 525-574, May.
    2. Leonardo Rezende, 2008. "Econometrics of auctions by least squares," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(7), pages 925-948.
    3. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    4. J. Levin & L. Einav, 2012. "Empirical Industrial Organization: A Progress Report," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 1.
    5. Porter, Robert H, 1995. "The Role of Information in U.S. Offshore Oil and Gas Lease Auctions," Econometrica, Econometric Society, vol. 63(1), pages 1-27, January.
    6. Laffont, Jean-Jacques & Ossard, Herve & Vuong, Quang, 1995. "Econometrics of First-Price Auctions," Econometrica, Econometric Society, vol. 63(4), pages 953-980, July.
    7. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    8. Harry J. Paarsch & Han Hong, 2006. "An Introduction to the Structural Econometrics of Auction Data," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262162350, December.
    9. Rosse, James N, 1970. "Estimating Cost Function Parameters without Using Cost Data: Illustrated Methodology," Econometrica, Econometric Society, vol. 38(2), pages 256-275, March.
    10. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    11. Mark B. Stewart, 1983. "On Least Squares Estimation when the Dependent Variable is Grouped," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(4), pages 737-753.
    12. Hal R. Varian, 1983. "Non-parametric Tests of Consumer Behaviour," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(1), pages 99-110.
    13. Anthony O'Hagan & John W. Stevens, 2003. "Assessing and comparing costs: how robust are the bootstrap and methods based on asymptotic normality?," Health Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 33-49, January.
    14. Varian, Hal R., 1985. "Non-parametric analysis of optimizing behavior with measurement error," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 445-458.
    15. Laffont, Jean-Jacques, 1997. "Game theory and empirical economics: The case of auction data 1," European Economic Review, Elsevier, vol. 41(1), pages 1-35, January.
    16. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    17. Philip A. Haile & Elie Tamer, 2003. "Inference with an Incomplete Model of English Auctions," Journal of Political Economy, University of Chicago Press, vol. 111(1), pages 1-51, February.
    18. Paarsch, Harry J., 1992. "Deciding between the common and private value paradigms in empirical models of auctions," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 191-215.
    19. Elodie Guerre & I. Perrigne & Q.H. Vuong, 2000. "Optimal nonparametric estimation of first-price auctions [[Estimation nonparamétrique optimale des enchères au premier prix]]," Post-Print hal-02697497, HAL.
    20. John C. Harsanyi, 1968. "Games with Incomplete Information Played by "Bayesian" Players Part II. Bayesian Equilibrium Points," Management Science, INFORMS, vol. 14(5), pages 320-334, January.
    21. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundström, David, 2014. "It’s All in the Interval - An imperfect measurements approach to estimate bidders’ primitives in auctions," Umeå Economic Studies 899, Umeå University, Department of Economics, revised 17 Jun 2016.
    2. Hickman Brent R. & Hubbard Timothy P. & Sağlam Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 67-106, August.
    3. Hickman Brent R. & Hubbard Timothy P. & Sağlam Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 67-106, August.
    4. Susan Athey & Philip A. Haile, 2006. "Empirical Models of Auctions," NBER Working Papers 12126, National Bureau of Economic Research, Inc.
    5. Lorentziadis, Panos L., 2016. "Optimal bidding in auctions from a game theory perspective," European Journal of Operational Research, Elsevier, vol. 248(2), pages 347-371.
    6. Hubbard, Timothy P. & Li, Tong & Paarsch, Harry J., 2012. "Semiparametric estimation in models of first-price, sealed-bid auctions with affiliation," Journal of Econometrics, Elsevier, vol. 168(1), pages 4-16.
    7. Reiss, Peter C. & Wolak, Frank A., 2003. "Structural Econometric Modeling: Rationales and Examples from Industrial Organization," Research Papers 1831, Stanford University, Graduate School of Business.
    8. Nathalie Gimenes, 2014. "Econometrics of Ascending Auctions by Quantile Regression," Working Papers, Department of Economics 2014_25, University of São Paulo (FEA-USP).
    9. Leonardo Rezende, 2008. "Econometrics of auctions by least squares," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(7), pages 925-948.
    10. Committee, Nobel Prize, 2020. "Improvements to auction theory and inventions of new auction formats," Nobel Prize in Economics documents 2020-2, Nobel Prize Committee.
    11. Gimenes, Nathalie & Guerre, Emmanuel, 2022. "Quantile regression methods for first-price auctions," Journal of Econometrics, Elsevier, vol. 226(2), pages 224-247.
    12. Dutra, Renato Cabral Dias & Carpio, Lucio Guido Tapia, 2021. "Biodiesel auctions in Brazil: Symmetry of bids and informational paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Quang Vuong & Sandra Campo & Isabelle Perrigne, 2003. "Asymmetry in first-price auctions with affiliated private values," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 179-207.
    14. Brendstrup, Bjarne & Paarsch, Harry J., 2007. "Semiparametric identification and estimation in multi-object, English auctions," Journal of Econometrics, Elsevier, vol. 141(1), pages 84-108, November.
    15. Jonathan B. Hill & Artyom Shneyerov, 2009. "Are There Common Values in BC Timber Sales? A Tail-Index Nonparametric Test," Working Papers 09003, Concordia University, Department of Economics.
    16. Villas-Boas Sofia B, 2006. "An Introduction to Auctions," Journal of Industrial Organization Education, De Gruyter, vol. 1(1), pages 1-22, December.
    17. Yixin Lu & Alok Gupta & Wolfgang Ketter & Eric van Heck, 2019. "Dynamic Decision Making in Sequential Business-to-Business Auctions: A Structural Econometric Approach," Management Science, INFORMS, vol. 65(8), pages 3853-3876, August.
    18. Christine Zulehner, 2007. "Bidding behavior in sequential cattle auctions," Vienna Economics Papers vie0705, University of Vienna, Department of Economics.
    19. Hill, Jonathan B. & Shneyerov, Artyom, 2013. "Are there common values in first-price auctions? A tail-index nonparametric test," Journal of Econometrics, Elsevier, vol. 174(2), pages 144-164.
    20. Sundström, David, 2016. "The Competition Effect in a Public Procurement Model: An error-in-variables approach," Umeå Economic Studies 920, Umeå University, Department of Economics, revised 17 Jun 2016.

    More about this item

    Keywords

    auctions; dependent variable transformation model; green public procurement; indirect inference; instrumental variable; latent variable; log-generalized gamma distribution; maximum likelihood; measurement error; non-linear least squares; objective effectiveness; orthogonal polynomial regression; prediction; simulation estimation; structural estimation;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C57 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Econometrics of Games and Auctions
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • H57 - Public Economics - - National Government Expenditures and Related Policies - - - Procurement
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Skog (email available below). General contact details of provider: https://edirc.repec.org/data/inumuse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.