IDEAS home Printed from https://ideas.repec.org/p/hhs/nhheco/2010_025.html
   My bibliography  Save this paper

Exploiting Parallelization in Spatial Statistics: an Applied Survey using R

Author

Listed:
  • Bivand, Roger

    () (Dept. of Economics, Norwegian School of Economics and Business Administration)

Abstract

Computing tasks may be parallelized top-down by splitting into per-node chunks when the tasks permit this kind of division, and particularly when there is little or no need for communication between the nodes. Another approach is to parallelize bottom-up, by the substitution of multi-threaded low-level functions for single-threaded ones in otherwise unchanged user-level functions. This survey examines the timings of typical spatial data analysis tasks across a range of data sizes and hardware under different combinations of these two approaches. Conclusions are drawn concerning choices of alternatives for parallelization, and attention is drawn to factors conditioning those choices.

Suggested Citation

  • Bivand, Roger, 2010. "Exploiting Parallelization in Spatial Statistics: an Applied Survey using R," Discussion Paper Series in Economics 25/2010, Norwegian School of Economics, Department of Economics.
  • Handle: RePEc:hhs:nhheco:2010_025
    as

    Download full text from publisher

    File URL: http://www.nhh.no/Admin/Public/DWSDownload.aspx?File=%2fFiles%2fFiler%2finstitutter%2fsam%2fDiscussion+papers%2f2010%2f25.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bivand, Roger & Müller, Werner G. & Reder, Markus, 2009. "Power calculations for global and local Moran's," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2859-2872, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Statistical software; Parallelization; Optimized linear algebra subroutines; Multicore processors; Spatial statistics.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhheco:2010_025. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dagny Hanne Kristiansen). General contact details of provider: http://edirc.repec.org/data/sonhhno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.