IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/1998_006.html
   My bibliography  Save this paper

The Search for Chaos and Nonlinearities in Swedish Stock Index Returns

Author

Listed:
  • Amilon, Henrik

    () (Department of Economics, Lund University)

  • Byström, Hans

    () (Department of Economics, Lund University)

Abstract

Numerous empirical studies have shown evidence of nonlinearities in financial time series, which can be of both a deterministic and a stochastic nature. Chaos is an example of the former, and heteroscedasticity in the conditional variance an example of the latter. We apply a test, the BDS test, to Swedish Stock Index returns and detect large deviations from the IID-hypothesis. There is no evidence of chaos, and most of the nonlinearities are due to conditionally heteroscedastic error terms. We look at monthly, daily, and 15-minute return series, and find no sensitivity in the results to choice of sampling frequency. Different GARCH models often seem to explain the nonlinearities detected by the BDS test, which is particularly the case for GARCH models with t-distributed errors fitted to monthly and daily returns.

Suggested Citation

  • Amilon, Henrik & Byström, Hans, 1998. "The Search for Chaos and Nonlinearities in Swedish Stock Index Returns," Working Papers 1998:6, Lund University, Department of Economics.
  • Handle: RePEc:hhs:lunewp:1998_006
    as

    Download full text from publisher

    File URL: http://swopec.hhs.se/lunewp/papers/lunewp1998_006.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-337, July.
    3. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    4. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    5. Poon, Ser-Huang & Taylor, Stephen J., 1992. "Stock returns and volatility: An empirical study of the UK stock market," Journal of Banking & Finance, Elsevier, vol. 16(1), pages 37-59, February.
    6. Baillie, Richard T. & DeGennaro, Ramon P., 1990. "Stock Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(02), pages 203-214, June.
    7. Paula L. Varson & Paul Doran, 1995. "The search for evidence of chaos in FTSE-100 daily returns," European Financial Management, European Financial Management Association, vol. 1(2), pages 201-210.
    8. Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Brock, W.A. & Dechert, W.D. & LeBaron, B. & Scheinkman, J.A., 1995. "A Test for Independence Based on the Correlation Dimension," Working papers 9520, Wisconsin Madison - Social Systems.
    11. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    12. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    BDS test; neural networks; heteroscedasticity; deterministic systems;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:1998_006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Edgerton). General contact details of provider: http://edirc.repec.org/data/delunse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.