IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-01019679.html
   My bibliography  Save this paper

An analytical approach for elasticity of demand activation with demand response mechanisms

Author

Listed:
  • Cédric Clastres

    (équipe EDDEN - PACTE - Pacte, Laboratoire de sciences sociales - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - IEPG - Sciences Po Grenoble - Institut d'études politiques de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Haikel Khalfallah

    (équipe EDDEN - PACTE - Pacte, Laboratoire de sciences sociales - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - IEPG - Sciences Po Grenoble - Institut d'études politiques de Grenoble - CNRS - Centre National de la Recherche Scientifique)

Abstract

The aim of this work is to demonstrate analytically under what conditions activating elasticity of demand of consumers could be beneficial for the social welfare. It has added to the literature on analyzing the use of price signals in eliciting demand response by an analytical approach. We develop so an analytical Nash model to quantify the effect of implementing demand response, via price signals, on social welfare and energy exchanges. A prior results show that the trade-off between producing locally and exporting energy depends on the opportunity cost of the energy and the global efficiency of the generation technology. Results are moreover impacted by the degree of integration between the countries. The novelty of this research is the demonstration of the existence of an optimal region of price signal for which demand response leads to increase the social welfare. This optimality region is negatively correlated to the degree of competitiveness of the generation technologies and to the market size of the system. We particularly notice that the value of un-served energy or energy reduction the producers could lose from such demand response program would limit the effectiveness of its implementation. This constraint is strengthened when energy exchanges between countries are limited. Finally, we demonstrate that when we only consider the impact in term of consumers' surplus, more aggressive DR could be adopted. The intensity of DR program is however negatively correlated to the degree of the elasticity of demand.

Suggested Citation

  • Cédric Clastres & Haikel Khalfallah, 2014. "An analytical approach for elasticity of demand activation with demand response mechanisms," Working Papers halshs-01019679, HAL.
  • Handle: RePEc:hal:wpaper:halshs-01019679
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01019679
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01019679/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Hledik, Ryan & Newell, Sam & Pfeifenberger, Hannes, 2007. "The Power of 5 Percent," The Electricity Journal, Elsevier, vol. 20(8), pages 68-77, October.
    2. Shira Horowitz and Lester Lave, 2014. "Equity in Residential Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Valeria Di Cosmo, Sean Lyons, and Anne Nolan, 2014. "Estimating the Impact of Time-of-Use Pricing on Irish Electricity Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    5. Hung-po Chao, 2011. "Demand response in wholesale electricity markets: the choice of customer baseline," Journal of Regulatory Economics, Springer, vol. 39(1), pages 68-88, February.
    6. Vespucci, Maria Teresa & Innorta, Mario & Cervigni, Guido, 2013. "A Mixed Integer Linear Programming model of a zonal electricity market with a dominant producer," Energy Economics, Elsevier, vol. 35(C), pages 35-41.
    7. Woo, Chi-Keung, 1990. "Efficient Electricity Pricing with Self-Rationing," Journal of Regulatory Economics, Springer, vol. 2(1), pages 69-81, March.
    8. Claire Bergaentzlé & Cédric Clastres & Haikel Khalfallah, 2014. "Demand-side management and European environmental and energy goals: an optimal complementary approach," Post-Print halshs-00928678, HAL.
    9. Park, Chan-Kook & Kim, Hyun-Jae & Kim, Yang-Soo, 2014. "A study of factors enhancing smart grid consumer engagement," Energy Policy, Elsevier, vol. 72(C), pages 211-218.
    10. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    11. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cédric Clastres & Haikel Khalfallah, 2015. "An Analytical Approach to Activating Demand Elasticity with a Demand Response Mechanism," Post-Print hal-01222582, HAL.
    2. Clastres, Cédric & Khalfallah, Haikel, 2015. "An analytical approach to activating demand elasticity with a demand response mechanism," Energy Economics, Elsevier, vol. 52(PA), pages 195-206.
    3. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    4. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    5. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    6. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    7. Roldán Fernández, Juan Manuel & Payán, Manuel Burgos & Santos, Jesús Manuel Riquelme & García, Ángel Luis Trigo, 2017. "The voluntary price for the small consumer: Real-time pricing in Spain," Energy Policy, Elsevier, vol. 102(C), pages 41-51.
    8. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    9. Claire Bergaentzlé & Cédric Clastres & Haikel Khalfallah, 2014. "Demand-side management and European environmental and energy goals: an optimal complementary approach," Post-Print halshs-00928678, HAL.
    10. Lambin, Xavier, 2020. "Integration of Demand Response in Electricity Market Capacity Mechanisms," Utilities Policy, Elsevier, vol. 64(C).
    11. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    12. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    13. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    14. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    15. Claire Bergaentzlé & Cédric Clastres, 2013. "Demand side management in an integrated electricity market: what are the impacts on generation and environmental concerns ?," Post-Print halshs-00839116, HAL.
    16. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    17. Olkkonen, Ville & Ekström, Jussi & Hast, Aira & Syri, Sanna, 2018. "Utilising demand response in the future Finnish energy system with increased shares of baseload nuclear power and variable renewable energy," Energy, Elsevier, vol. 164(C), pages 204-217.
    18. Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
    19. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    20. Rövekamp, Patrick & Schöpf, Michael & Wagon, Felix & Weibelzahl, Martin, 2023. "For better or for worse? On the economic and ecologic value of industrial demand side management in constrained electricity grids," Energy Policy, Elsevier, vol. 183(C).

    More about this item

    Keywords

    demand response; elasticity of demand; electricity market;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-01019679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.