IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02971862.html
   My bibliography  Save this paper

Energy recovery on the agenda. Waste heat: a matter of public policy and social science concern

Author

Listed:
  • Antoine Fontaine

    (EVS - Environnement, Ville, Société - ENS de Lyon - École normale supérieure de Lyon - Mines Saint-Étienne MSE - École des Mines de Saint-Étienne - IMT - Institut Mines-Télécom [Paris] - UL2 - Université Lumière - Lyon 2 - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - UJM - Université Jean Monnet - Saint-Étienne - ENTPE - École Nationale des Travaux Publics de l'État - ENSAL - École nationale supérieure d'architecture de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Laurence Rocher

    (EVS - Environnement, Ville, Société - ENS de Lyon - École normale supérieure de Lyon - Mines Saint-Étienne MSE - École des Mines de Saint-Étienne - IMT - Institut Mines-Télécom [Paris] - UL2 - Université Lumière - Lyon 2 - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - UJM - Université Jean Monnet - Saint-Étienne - ENTPE - École Nationale des Travaux Publics de l'État - ENSAL - École nationale supérieure d'architecture de Lyon - CNRS - Centre National de la Recherche Scientifique)

Abstract

Waste heat from industry or urban facilities represents a largely underused and long disregarded energy source, while heating and cooling count for half the final energy demand in Europe. From the early 2010s onwards, waste heat recovery (WHR) is being recognized as a key challenge for energy transition and tends to be integrated into energy strategies at different levels. This paper provides an analysis of how WHR became a matter of public policy in Europe and in France. Based on a literature review, the analysis shows that WHR has been framed as a techno-economic problem, while some barriers (legal, organizational) to its development remain largely unaddressed. A study of European and French energy agendas illustrates how WHR progressively started to be recognized as an energy resource next to renewables. As a result, questions are raised as to further social science contributions to an extended research agenda addressing WHR

Suggested Citation

  • Antoine Fontaine & Laurence Rocher, 2021. "Energy recovery on the agenda. Waste heat: a matter of public policy and social science concern," Post-Print halshs-02971862, HAL.
  • Handle: RePEc:hal:journl:halshs-02971862
    DOI: 10.1080/09640568.2020.1823345
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02971862
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-02971862/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/09640568.2020.1823345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dénarié, A. & Muscherà, M. & Calderoni, M. & Motta, M., 2019. "Industrial excess heat recovery in district heating: Data assessment methodology and application to a real case study in Milano, Italy," Energy, Elsevier, vol. 166(C), pages 170-182.
    2. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
    3. Gabillet, Pauline, 2015. "Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district," Energy Policy, Elsevier, vol. 78(C), pages 189-197.
    4. Svensson, Inger-Lise & Jönsson, Johanna & Berntsson, Thore & Moshfegh, Bahram, 2008. "Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden--Part 1: Methodology," Energy Policy, Elsevier, vol. 36(11), pages 4178-4185, November.
    5. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    6. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    7. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    8. Laurence Rocher, 2014. "Climate-Energy Policies, Heat Provision, and Urban Planning: A Renewal of Interest in District Heating in France: Insights from National and Local Levels," Journal of Urban Technology, Taylor & Francis Journals, vol. 21(3), pages 3-19, July.
    9. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    10. Lygnerud, Kristina & Wheatcroft, Edward & Wynn, Henry, 2019. "Contracts, business models and barriers to investing in low temperature district heating projects," LSE Research Online Documents on Economics 101286, London School of Economics and Political Science, LSE Library.
    11. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    12. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    13. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    14. Ruth E. Bush & Catherine S.E. Bale, 2019. "Energy planning tools for low carbon transitions: an example of a multicriteria spatial planning tool for district heating," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(12), pages 2186-2209, October.
    15. Chiu, J.NW. & Castro Flores, J. & Martin, V. & Lacarrière, B., 2016. "Industrial surplus heat transportation for use in district heating," Energy, Elsevier, vol. 110(C), pages 139-147.
    16. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Fontaine & Laurence Rocher, 2023. "Cities looking for waste heat: The dilemmas of energy and industry nexuses in French metropolitan areas," Post-Print hal-04156338, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    3. Fabian Bühler & Stefan Petrović & Torben Ommen & Fridolin Müller Holm & Henrik Pieper & Brian Elmegaard, 2018. "Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS," Energies, MDPI, vol. 11(4), pages 1-24, March.
    4. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    5. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    6. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    7. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    8. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
    9. Steffen Nielsen & Kenneth Hansen & Rasmus Lund & Diana Moreno, 2020. "Unconventional Excess Heat Sources for District Heating in a National Energy System Context," Energies, MDPI, vol. 13(19), pages 1-18, September.
    10. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    11. Somogyi, Viola & Sebestyén, Viktor & Domokos, Endre, 2018. "Assessment of wastewater heat potential for district heating in Hungary," Energy, Elsevier, vol. 163(C), pages 712-721.
    12. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    13. Antoine Fontaine & Laurence Rocher, 2024. "Cities looking for waste heat: The dilemmas of energy and industry nexuses in French metropolitan areas," Urban Studies, Urban Studies Journal Limited, vol. 61(2), pages 254-272, February.
    14. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    15. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    16. Ziemele, Jelena & Dace, Elina, 2022. "An analytical framework for assessing the integration of the waste heat into a district heating system: Case of the city of Riga," Energy, Elsevier, vol. 254(PB).
    17. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    18. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    19. Köhrsen, Jens, 2018. "Exogenous shocks, social skill, and power: Urban energy transitions as social fields," Energy Policy, Elsevier, vol. 117(C), pages 307-315.
    20. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.

    More about this item

    Keywords

    Waste heat recovery; Energy policy; Europe; France; Research agenda;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02971862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.