IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04120423.html

Playing the synthesizer with Canadian data: Adding polls to a structural forecasting model

Author

Listed:
  • Philippe Mongrain
  • Richard Nadeau

    (UdeM - Université de Montréal)

  • Bruno Jérôme

    (UP2 - Université Panthéon-Assas)

Abstract

Election forecasting has become a fixture of election campaigns in a number of democracies. Structural modeling, the major approach to forecasting election results, relies on ‘fundamental’ economic and political variables to predict the incumbent’s vote share usually a few months in advance. Some political scientists contend that adding vote intention polls to these models—i.e., synthesizing ‘fundamental’ variables and polling information—can lead to important accuracy gains. In this paper, we look at the efficiency of different model specifications in predicting the Canadian federal elections from 1953 to 2015. We find that vote intention polls only allow modest accuracy gains late in the campaign. With this backdrop in mind, we then use different model specifications to make ex ante forecasts of the 2019 federal election. Our findings have a number of important implications for the forecasting discipline in Canada as they address the benefits of combining polls and ‘fundamental’ variables to predict election results; the efficiency of varying lag structures; and the issue of translating votes into seats.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Philippe Mongrain & Richard Nadeau & Bruno Jérôme, 2021. "Playing the synthesizer with Canadian data: Adding polls to a structural forecasting model," Post-Print hal-04120423, HAL.
  • Handle: RePEc:hal:journl:hal-04120423
    DOI: 10.1016/j.ijforecast.2020.05.006
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anurag Barthwal & Mamta Bhatt & Shwetank Avikal & Chandra Prakash, 2025. "Machine learning-based prediction models for electoral outcomes in India: a comparative analysis of exit polls from 2014–2021," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(1), pages 313-338, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04120423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.