IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01919401.html
   My bibliography  Save this paper

On the Convergence of the Generalized Ibn Ezra Value

Author

Listed:
  • Louis de Mesnard

    () (CREGO - Centre de Recherche en Gestion des Organisations [Dijon] - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE] - UB - Université de Bourgogne - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar)

Abstract

Ibn Ezra (Sefar ha-Mispar (The Book of the Number, in Hebrew), Verona (German trans: Silberberg M. (1895)). Kauffmann, Frankfurt am Main,1146), Rabinovitch (Probability and statistical inference in medieval Jewish literature. University of Toronto Press, Toronto,1973) and O'Neill (Math Soc Sci 2(4):345–371,1982)proposed a method for solving the "rights arbitration problem" (one of the historical problems of "bankruptcy") for n claimants when the estate E is equal to the largest claim. However, when the greatest claim is for less than the estate, the question of what to do with the difference between E and the largest claim is posed. Alcalde et al.'s (Econ Theory 26(1):103–114,2005) Generalized Ibn Ezra Value (GiEV), solves the problem in T iterations, of n steps. By using Monte-Carlo experiments, we show that: (i) T grows linearly with the number of claimants, which makes GiEV rapidly impracticable for real applications. (ii) The more E is close to the total claim d, themore T grows: T linearly grows when E exponentially approaches d by a factor 10. Moreover, we proved through theory that GiEV fails to provide a solution in a finite number of iterations for the trivial case E = d, whereas it should obviously find a solution in one iteration. So, even if GiEV is convergent, the sum of claims d appears as an asymptote: the number of iterations tends to infinite when the estate E approaches the claims total d. We conclude that GiEV is inefficient and usable only when: (1) the number of claimants is low, and (2) the estate E is largely lower than the total claims d.

Suggested Citation

  • Louis de Mesnard, 2019. "On the Convergence of the Generalized Ibn Ezra Value," Post-Print hal-01919401, HAL.
  • Handle: RePEc:hal:journl:hal-01919401
    DOI: 10.1007/s10614-018-9863-0
    Note: View the original document on HAL open archive server: https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01919401
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. H. Peyton Young, 1987. "On Dividing an Amount According to Individual Claims or Liabilities," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 398-414, August.
    2. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    3. Chun, Youngsub & Thomson, William, 2005. "Convergence under replication of rules to adjudicate conflicting claims," Games and Economic Behavior, Elsevier, vol. 50(2), pages 129-142, February.
    4. José Alcalde & María Marco & José Silva, 2005. "Bankruptcy games and the Ibn Ezra’s proposal," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 103-114, July.
    5. José Alcalde & María Marco & José Silva, 2008. "The minimal overlap rule revisited," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(1), pages 109-128, June.
    6. Gustavo Bergantiños & Luciano Méndez-Naya, 2001. "Additivity in bankruptcy problems and in allocation problems," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(3), pages 223-229.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Rights arbitration; Bankruptcy; Monte-Carlo experiments; Convergence; Cooperative game; Game theory; Ibn Ezra;

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • B1 - Schools of Economic Thought and Methodology - - History of Economic Thought through 1925
    • B4 - Schools of Economic Thought and Methodology - - Economic Methodology

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01919401. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.