IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00665455.html
   My bibliography  Save this paper

An historical perspective on the forecasting performance of the Treasury Model: Forecasting the growth in UK consumers' expenditure

Author

Listed:
  • S Cook

    () (Economics - Swansea University)

Abstract

Drawing upon Treasury Official Economic Forecasts Vols. I & II, a series of Treasury Model forecasts of the percentage growth in real total consumers' expenditure are derived for the period 1967 to 1989. The one-, two- and three-step ahead forecasts examined cover an interesting period which includes major shocks to the UK economy, business cycle effects and changes in economic policy. Whilst a battery of forecast evaluation statistics and tests do not detect any evidence of forecast bias or irrationality over the whole sample, split-sample analysis provides evidence of a switch from overprediction to underprediction around 1977. In addition, the application of 'modified' versions of Holden-Peel (1990) tests provides evidence of the longest horizon forecast failing to capture the full movement of changes in consumption growth. Using simple regression and a selection of forecast encompassing tests, shorter horizon forecasts are found to dominate longer horizon forecasts, a feature which might be expected logically, but need not occur in practice. Finally, forecast performance is related to changes in model specification and modelling methodology.

Suggested Citation

  • S Cook, 2011. "An historical perspective on the forecasting performance of the Treasury Model: Forecasting the growth in UK consumers' expenditure," Post-Print hal-00665455, HAL.
  • Handle: RePEc:hal:journl:hal-00665455
    DOI: 10.1080/00036846.2010.510465
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00665455
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00665455/document
    Download Restriction: no

    References listed on IDEAS

    as
    1. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    2. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    3. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    4. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, December.
    5. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    6. Davidson, James E H, et al, 1978. "Econometric Modelling of the Aggregate Time-Series Relationship between Consumers' Expenditure and Income in the United Kingdom," Economic Journal, Royal Economic Society, vol. 88(352), pages 661-692, December.
    7. Mills, Terence C. & Pepper, Gordon T., 1999. "Assessing the forecasters: an analysis of the forecasting records of the Treasury, the London Business School and the National Institute," International Journal of Forecasting, Elsevier, vol. 15(3), pages 247-257, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    2. Steve Cook, 2008. "Cross‐data‐vintage Encompassing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 849-865, December.
    3. Sanders, Dwight R. & Manfredo, Mark R., 2003. "USDA Livestock Price Forecasts: A Comprehensive Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.
    4. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, June.
    5. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    6. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, December.
    7. Sanders, Dwight R. & Manfredo, Mark R., 2002. "Usda Production Forecasts For Pork, Beef, And Broilers: An Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-14, July.
    8. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    9. Pär Österholm, 2005. "The Taylor Rule: A Spurious Regression?," Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 217-247, July.
    10. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    11. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740, October.
    12. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    13. Giancarlo Lutero & Marco Marini, 2010. "Direct vs Indirect Forecasts of Foreign Trade Unit Value Indices," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 12(2-3), pages 73-96, October.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Cath Sleeman, 2006. "Analysis of revisions to quarterly GDP - a real-time database," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 69, pages 1-44., March.
    16. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    17. Andersson, Andreas & Österholm, Pär, 2001. "The Impact of Demography on the Real Exchange Rate," Working Paper Series 2001:11, Uppsala University, Department of Economics.
    18. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
    19. Sanders, Dwight R. & Manfredo, Mark R., 2004. "Predicting Pork Supplies: An Application of Multiple Forecast Encompassing," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(3), pages 1-11, December.
    20. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra.

    More about this item

    Keywords

    Social Sciences & Humanities;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00665455. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.