IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-01491990.html
   My bibliography  Save this paper

Impact of multimodality of distributions on VaR and ES calculations

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Bertrand Hassani

    (Grupo Santander, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Kehan Li

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

Unimodal probability distribution has been widely used for Value-at-Risk (VaR) computation by investors, risk managers and regulators. However, financial data may be characterized by distributions having more than one modes. Using a unimodal distribution may lead to bias for risk measure computation. In this paper, we discuss the influence of using multimodal distributions on VaR and Expected Shortfall (ES) calculation. Two multimodal distribution families are considered: Cobb's family and distortion family. We provide two ways to compute the VaR and the ES for them: an adapted rejection sampling technique for Cobb's family and an inversion approach for distortion family. For empirical study, two data sets are considered: a daily data set concerning operational risk and a three month scenario of market portfolio return built five minutes intraday data. With a complete spectrum of confidence levels from 0001 to 0.999, we analyze the VaR and the ES to see the interest of using multimodal distribution instead of unimodal distribution.

Suggested Citation

  • Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Impact of multimodality of distributions on VaR and ES calculations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01491990, HAL.
  • Handle: RePEc:hal:cesptp:halshs-01491990
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-01491990
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-01491990/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Fuqing & Wang, Shaochen, 2011. "Asymptotic behavior of the empirical conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 345-352.
    2. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    3. Hang Chan, Ngai & Deng, Shi-Jie & Peng, Liang & Xia, Zhendong, 2007. "Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 137(2), pages 556-576, April.
    4. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Impact of multimodality of distributions on VaR and ES calculations," Documents de travail du Centre d'Economie de la Sorbonne 17019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Impact of multimodality of distributions on VaR and ES calculations," Post-Print halshs-01491990, HAL.
    3. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    4. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    5. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    6. repec:hal:journl:hal-00880258 is not listed on IDEAS
    7. Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2016. "Measuring risks in the extreme tail: The extreme VaR and its confidence interval," Documents de travail du Centre d'Economie de la Sorbonne 16034rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2017.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    9. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    10. Kratz , Marie, 2013. "There is a VaR Beyond Usual Approximations," ESSEC Working Papers WP1317, ESSEC Research Center, ESSEC Business School.
    11. Marie Kratz, 2013. "There is a VaR Beyond Usual Approximations," Working Papers hal-00880258, HAL.
    12. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    13. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    14. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    15. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2017. "On a robust risk measurement approach for capital determination errors minimization," Papers 1707.09829, arXiv.org, revised Oct 2020.
    16. Iulia Lupu & Ana Barbara Bobirca & Paul Gabriel Miclaus & Tudor Ciumara, 2020. "Risk Management of Companies Included in the EURO STOXX Sustainability Index. An Investors' Perception," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(55), pages 707-707, August.
    17. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    18. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Measuring risks in the extreme tail: The extreme VaR and its confidence interval," Post-Print halshs-01317391, HAL.
    19. Marie Kratz, 2013. "There is a VaR beyond usual approximations," Papers 1311.0270, arXiv.org.
    20. Aljinović Zdravka & Trgo Andrea, 2018. "CVaR in Measuring Sector's Risk on the Croatian Stock Exchange," Business Systems Research, Sciendo, vol. 9(2), pages 8-17, July.
    21. Fernanda Maria Müller & Marcelo Brutti Righi, 2018. "Numerical comparison of multivariate models to forecasting risk measures," Risk Management, Palgrave Macmillan, vol. 20(1), pages 29-50, February.

    More about this item

    Keywords

    Risks; Multimodal distributions; Value-at-Risk; Expected Shortfall; Moments method; Adapted rejection sampling; Regulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-01491990. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.