IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00113340.html
   My bibliography  Save this paper

Axiomatisation of the Shapley value and power index for bi-cooperative games

Author

Listed:
  • Christophe Labreuche

    (Laboratoire Albert Fert (ex-UMPhy Unité mixte de physique CNRS/Thales) - THALES [France] - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)

  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

Bi-cooperative games have been introduced by Bilbao as a generalization of classical cooperative games, where each player can participate positively to the game (defender), negatively (defeater), or do not participate (abstentionist). In a voting situation (simple games), they coincide with ternary voting game of Felsenthal and Mochover, where each voter can vote in favor, against or abstain. In this paper, we propose a definition of value or solution concept for bi-cooperative games, close to the Shapley value, and we give an interpretation of this value in the framework of (ternary) simple games, in the spirit of Shapley-Shubik, using the notion of swing. Lastly, we compare our definition with the one of Felsenthal and Machover, based on the notion of ternary roll-call, and the Shapley value of multi-choice games proposed by Hsiao and Ragahavan.

Suggested Citation

  • Christophe Labreuche & Michel Grabisch, 2006. "Axiomatisation of the Shapley value and power index for bi-cooperative games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00113340, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00113340
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00113340
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00113340/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2019. "Interaction indices for multichoice games," Documents de travail du Centre d'Economie de la Sorbonne 19019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Felsenthal, Dan S & Machover, Moshe, 1996. "Alternative Forms of the Shapley Value and the Shapley-Shubik Index," Public Choice, Springer, vol. 87(3-4), pages 315-318, June.
    3. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    4. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    5. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabien Lange & Michel Grabisch, 2011. "New axiomatizations of the Shapley interaction index for bi-capacities," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00625355, HAL.
    2. Christophe Labreuche & Michel Grabisch, 2008. "A value for bi-cooperative games," Post-Print halshs-00308738, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René van den Brink & Agnieszka Rusinowska & Frank Steffen, 2009. "Measuring Power and Satisfaction in Societies with Opinion Leaders: Dictator and Opinion Leader Properties," Tinbergen Institute Discussion Papers 09-052/1, Tinbergen Institute.
    2. René Brink & Agnieszka Rusinowska & Frank Steffen, 2013. "Measuring power and satisfaction in societies with opinion leaders: an axiomatization," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 671-683, September.
    3. Michel Grabisch & Agnieszka Rusinowska, 2007. "Influence Indices," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00142479, HAL.
      • Agnieszka Rusinowska & Michel Grabisch, 2007. "Influence Indices," Working Papers 0705, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
      • Michel Grabisch & Agnieszka Rusinowska, 2007. "Influence Indices," Post-Print halshs-00142479, HAL.
    4. Giulia Bernardi, 2018. "A New Axiomatization of the Banzhaf Index for Games with Abstention," Group Decision and Negotiation, Springer, vol. 27(1), pages 165-177, February.
    5. Sascha Kurz, 2018. "Importance In Systems With Interval Decisions," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-23, September.
    6. Luisa Monroy & Francisco Fernández, 2014. "Banzhaf index for multiple voting systems. An application to the European Union," Annals of Operations Research, Springer, vol. 215(1), pages 215-230, April.
    7. Friedman, Jane & Parker, Cameron, 2018. "The conditional Shapley–Shubik measure for ternary voting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 379-390.
    8. Kurz, Sascha & Mayer, Alexander & Napel, Stefan, 2021. "Influence in weighted committees," European Economic Review, Elsevier, vol. 132(C).
    9. André Casajus & Frank Huettner, 2019. "The Coleman–Shapley index: being decisive within the coalition of the interested," Public Choice, Springer, vol. 181(3), pages 275-289, December.
    10. Borkowski, Agnieszka, 2003. "Machtverteilung Im Ministerrat Nach Dem Vertrag Von Nizza Und Den Konventsvorschlagen In Einer Erweiterten Europaischen Union," IAMO Discussion Papers 14887, Institute of Agricultural Development in Transition Economies (IAMO).
    11. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.
    12. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
    13. Thomas König & Thomas Bräuninger, 1996. "Power and Political Coordination in American and German Multi-Chamber Legislation," Journal of Theoretical Politics, , vol. 8(3), pages 331-360, July.
    14. Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017. "Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral," L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
    15. M. Albizuri & Annick Laruelle, 2013. "An axiomatization of success," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(1), pages 145-155, June.
      • Albizuri Irigoyen, Miren Iosune & Laruelle, Annick, 2011. "An axiomatization of success," IKERLANAK 6256, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    16. Josep Freixas & Montserrat Pons, 2017. "Using the Multilinear Extension to Study Some Probabilistic Power Indices," Group Decision and Negotiation, Springer, vol. 26(3), pages 437-452, May.
    17. M. Musegaas & P. E. M. Borm & M. Quant, 2018. "Three-valued simple games," Theory and Decision, Springer, vol. 85(2), pages 201-224, August.
    18. Pongou, Roland & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Power theories for multi-choice organizations and political rules: Rank-order equivalence," Operations Research Perspectives, Elsevier, vol. 1(1), pages 42-49.
    19. Paul Schure & Amy Verdun, 2008. "Legislative Bargaining in the European Union," European Union Politics, , vol. 9(4), pages 459-486, December.
    20. Ori Haimanko, 2019. "Composition independence in compound games: a characterization of the Banzhaf power index and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 755-768, September.

    More about this item

    Keywords

    Cooperative game theory; bi-cooperative games; power index; Shapley value; Jeux coopératifs; jeux bi-coopératifs; indice de pouvoir; valeur de Shapley;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00113340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.