IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v27y2018i1d10.1007_s10726-017-9546-6.html
   My bibliography  Save this article

A New Axiomatization of the Banzhaf Index for Games with Abstention

Author

Listed:
  • Giulia Bernardi

    (Politecnico di Milano)

Abstract

(3, 2)-Simple games are a model for voting situation in which players can vote not only in favour or against a proposal but they can also abstain. Also in this model, power indices are used to evaluate the power of players. In particular, the Banzhaf index and the Shapley–Shubik index have been generalized to define analogous power indices in the context of games with abstention. In this work we provide a new axiomatization of the Banzhaf index for games with abstention, to underline its properties and increase the justification of the use of this index as a solution concept also in the family of games with abstention.

Suggested Citation

  • Giulia Bernardi, 2018. "A New Axiomatization of the Banzhaf Index for Games with Abstention," Group Decision and Negotiation, Springer, vol. 27(1), pages 165-177, February.
  • Handle: RePEc:spr:grdene:v:27:y:2018:i:1:d:10.1007_s10726-017-9546-6
    DOI: 10.1007/s10726-017-9546-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-017-9546-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-017-9546-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    2. Annick Laruelle & Federico Valenciano, 2001. "Shapley-Shubik and Banzhaf Indices Revisited," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 89-104, February.
    3. Josep Freixas & Roberto Lucchetti, 2016. "Power in voting rules with abstention: an axiomatization of a two components power index," Annals of Operations Research, Springer, vol. 244(2), pages 455-474, September.
    4. Rana Barua & Satya R. Chakravarty & Sonali Roy, 2005. "A New Characterization Of The Banzhaf Index Of Power," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 545-553.
    5. M. J. Albizuri, 2001. "An axiomatization of the modified Banzhaf Coleman index," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 167-176.
    6. Feltkamp, Vincent, 1995. "Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 179-186.
    7. Felsenthal, Dan S & Machover, Moshe, 1996. "Alternative Forms of the Shapley Value and the Shapley-Shubik Index," Public Choice, Springer, vol. 87(3-4), pages 315-318, June.
    8. Monderer, Dov & Samet, Dov, 2002. "Variations on the shapley value," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 54, pages 2055-2076, Elsevier.
    9. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    10. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    11. Josep Freixas & William S. Zwicker, 2003. "Weighted voting, abstention, and multiple levels of approval," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(3), pages 399-431, December.
    12. Josep Freixas & Montserrat Pons, 2017. "Using the Multilinear Extension to Study Some Probabilistic Power Indices," Group Decision and Negotiation, Springer, vol. 26(3), pages 437-452, May.
    13. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertrand Mbama Engoulou & Pierre Wambo & Lawrence Diffo Lambo, 2023. "Banzhaf–Coleman–Dubey–Shapley sensitivity index for simple multichoice voting games," Annals of Operations Research, Springer, vol. 328(2), pages 1349-1364, September.
    2. Bertrand Mbama Engoulou & Pierre Wambo & Lawrence Diffo Lambo, 2023. "A Characterization of the Totally Critical Raw Banzhaf Power Index on Dichotomous Voting Games with Several Levels of Approval in Input," Group Decision and Negotiation, Springer, vol. 32(4), pages 871-888, August.
    3. Josep Freixas & Montserrat Pons, 2021. "An Appropriate Way to Extend the Banzhaf Index for Multiple Levels of Approval," Group Decision and Negotiation, Springer, vol. 30(2), pages 447-462, April.
    4. M. J. Albizuri & A. Goikoetxea, 2021. "The Owen–Shapley Spatial Power Index in Three-Dimensional Space," Group Decision and Negotiation, Springer, vol. 30(5), pages 1027-1055, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedman, Jane & Parker, Cameron, 2018. "The conditional Shapley–Shubik measure for ternary voting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 379-390.
    2. André Casajus & Frank Huettner, 2019. "The Coleman–Shapley index: being decisive within the coalition of the interested," Public Choice, Springer, vol. 181(3), pages 275-289, December.
    3. Francesc Carreras & María Albina Puente, 2012. "Symmetric Coalitional Binomial Semivalues," Group Decision and Negotiation, Springer, vol. 21(5), pages 637-662, September.
    4. Carreras, Francesc, 2005. "A decisiveness index for simple games," European Journal of Operational Research, Elsevier, vol. 163(2), pages 370-387, June.
    5. René Brink & Agnieszka Rusinowska & Frank Steffen, 2013. "Measuring power and satisfaction in societies with opinion leaders: an axiomatization," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 671-683, September.
    6. Ori Haimanko, 2019. "Composition independence in compound games: a characterization of the Banzhaf power index and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 755-768, September.
    7. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    8. René van den Brink & Agnieszka Rusinowska & Frank Steffen, 2009. "Measuring Power and Satisfaction in Societies with Opinion Leaders: Dictator and Opinion Leader Properties," Tinbergen Institute Discussion Papers 09-052/1, Tinbergen Institute.
    9. Ori Haimanko, 2020. "Generalized Coleman-Shapley indices and total-power monotonicity," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 299-320, March.
    10. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali, 2006. "On the Coleman indices of voting power," European Journal of Operational Research, Elsevier, vol. 171(1), pages 273-289, May.
    11. Josep Freixas & Montserrat Pons, 2021. "An Appropriate Way to Extend the Banzhaf Index for Multiple Levels of Approval," Group Decision and Negotiation, Springer, vol. 30(2), pages 447-462, April.
    12. Margarita Domènech & José Miguel Giménez & María Albina Puente, 2022. "Weak null, necessary defender and necessary detractor players: characterizations of the Banzhaf and the Shapley bisemivalues," Annals of Operations Research, Springer, vol. 318(2), pages 889-910, November.
    13. Josep Freixas & Roberto Lucchetti, 2016. "Power in voting rules with abstention: an axiomatization of a two components power index," Annals of Operations Research, Springer, vol. 244(2), pages 455-474, September.
    14. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali & Sarkar, Palash, 2004. "A characterization and some properties of the Banzhaf-Coleman-Dubey-Shapley sensitivity index," Games and Economic Behavior, Elsevier, vol. 49(1), pages 31-48, October.
    15. Annick Laruelle & Federico Valenciano, 2005. "A critical reappraisal of some voting power paradoxes," Public Choice, Springer, vol. 125(1), pages 17-41, July.
    16. Fabien Lange & László Kóczy, 2013. "Power indices expressed in terms of minimal winning coalitions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 281-292, July.
    17. Kurz, Sascha & Mayer, Alexander & Napel, Stefan, 2021. "Influence in weighted committees," European Economic Review, Elsevier, vol. 132(C).
    18. Kurz, Sascha & Maaser, Nicola & Napel, Stefan, 2018. "Fair representation and a linear Shapley rule," Games and Economic Behavior, Elsevier, vol. 108(C), pages 152-161.
    19. Bhattacherjee, Sanjay & Sarkar, Palash, 2017. "Correlation and inequality in weighted majority voting games," MPRA Paper 83168, University Library of Munich, Germany.
    20. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:27:y:2018:i:1:d:10.1007_s10726-017-9546-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.