IDEAS home Printed from
   My bibliography  Save this paper

A systems approach to recursive economic forecasting and seasonal adjustment


  • Peter Young
  • Cho Ng
  • Peter Armitage


The paper discusses a new, fully recursive approach to the adaptive modeling, forecasting and seasonal adjustment of nonstationary economic time-series. The procedure is based around a time variable parameter (TVP) version of the well known “component” or “structural” model. It employs a novel method of sequential spectral decomposition (SSD), based on recursive state-space smoothing, to decompose the series into a number of quasi-orthogonal components. This SSD procedure can be considered as a complete approach to the problem of model identification and estimation, or it can be used as a first step in maximum likelihood estimation. Finally, the paper illustrates the overall adaptive approach by considering a practical example of a UK unemployment series which exhibits marked nonstationarity caused by various economic factors.

Suggested Citation

  • Peter Young & Cho Ng & Peter Armitage, 1989. "A systems approach to recursive economic forecasting and seasonal adjustment," Discussion Paper / Institute for Empirical Macroeconomics 8, Federal Reserve Bank of Minneapolis.
  • Handle: RePEc:fip:fedmem:8

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Nerlove, Marc & Grether, David M. & Carvalho, José L., 1979. "Analysis of Economic Time Series," Elsevier Monographs, Elsevier, edition 1, number 9780125157506 edited by Shell, Karl.
    2. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Young, Peter & Pedregal, Diego, 1997. "Comments on "An analysis of the international tourism demand in Spain" by P. Gonzalez and P. Moral," International Journal of Forecasting, Elsevier, vol. 13(4), pages 551-556, December.
    2. Young, Peter C. & Pedregal, Diego J., 1999. "Macro-economic relativity: government spending, private investment and unemployment in the USA 1948-1998," Structural Change and Economic Dynamics, Elsevier, vol. 10(3-4), pages 359-380, December.
    3. Pollock, D.S.G., 2006. "Econometric methods of signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2268-2292, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedmem:8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janelle Ruswick). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.