IDEAS home Printed from https://ideas.repec.org/p/fip/fedcwq/99878.html
   My bibliography  Save this paper

Are Revisions to State-Level GDP Data in the US Well Behaved?

Author

Listed:
  • James Mitchell
  • Taylor Shiroff

Abstract

No, first estimates of state GDP growth are not rational forecasts, except for Georgia. Revisions to first estimates of state-level GDP growth tend to be biased, large, and/or predictable using information known at the time of the first estimate.

Suggested Citation

  • James Mitchell & Taylor Shiroff, 2025. "Are Revisions to State-Level GDP Data in the US Well Behaved?," Working Papers 25-11, Federal Reserve Bank of Cleveland.
  • Handle: RePEc:fip:fedcwq:99878
    DOI: 10.26509/frbc-wp-202511
    as

    Download full text from publisher

    File URL: https://doi.org/10.26509/frbc-wp-202511
    File Function: Persistent link
    Download Restriction: no

    File URL: https://www.clevelandfed.org/-/media/project/clevelandfedtenant/clevelandfedsite/publications/working-papers/2025/wp2511.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.26509/frbc-wp-202511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    2. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    2. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    3. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    4. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    5. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    6. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
    7. Biswas, Anindya, 2014. "The output gap and expected security returns," Review of Financial Economics, Elsevier, vol. 23(3), pages 131-140.
    8. Thomas A. Knetsch & Hans‐Eggert Reimers, 2009. "Dealing with Benchmark Revisions in Real‐Time Data: The Case of German Production and Orders Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 209-235, April.
    9. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    10. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    11. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    12. Edison, Hali J. & Warnock, Francis E., 2008. "Cross-border listings, capital controls, and equity flows to emerging markets," Journal of International Money and Finance, Elsevier, vol. 27(6), pages 1013-1027, October.
    13. Fred Joutz & Michael P. Clements & Herman O. Stekler, 2007. "An evaluation of the forecasts of the federal reserve: a pooled approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 121-136.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Heather L. R. Tierney, 2012. "Examining the ability of core inflation to capture the overall trend of total inflation," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 493-514, February.
    16. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    17. Aslanidis, Nektarios & Cipollini, Andrea, 2010. "Leading indicator properties of US high-yield credit spreads," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 145-156, March.
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    19. Leo Krippner & Leif Anders Thorsrud, 2009. "Forecasting New Zealand's economic growth using yield curve information," Reserve Bank of New Zealand Discussion Paper Series DP2009/18, Reserve Bank of New Zealand.
    20. Döpke, Jörg, 2004. "Real-time data and business cycle analysis in Germany," Discussion Paper Series 1: Economic Studies 2004,11, Deutsche Bundesbank.

    More about this item

    Keywords

    data revisions; real-time data; state GDP; forecast efficiency;
    All these keywords.

    JEL classification:

    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwq:99878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: 4D Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbclus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.