IDEAS home Printed from https://ideas.repec.org/p/fip/fedcwq/99878.html
   My bibliography  Save this paper

Are Revisions to State-Level GDP Data in the US Well Behaved?

Author

Listed:
  • James Mitchell
  • Taylor Shiroff

Abstract

No, first estimates of state GDP growth are not rational forecasts, except for Georgia. Revisions to first estimates of state-level GDP growth tend to be biased, large, and/or predictable using information known at the time of the first estimate.

Suggested Citation

  • James Mitchell & Taylor Shiroff, 2025. "Are Revisions to State-Level GDP Data in the US Well Behaved?," Working Papers 25-11, Federal Reserve Bank of Cleveland.
  • Handle: RePEc:fip:fedcwq:99878
    DOI: 10.26509/frbc-wp-202511
    as

    Download full text from publisher

    File URL: https://doi.org/10.26509/frbc-wp-202511
    File Function: Persistent link
    Download Restriction: no

    File URL: https://www.clevelandfed.org/-/media/project/clevelandfedtenant/clevelandfedsite/publications/working-papers/2025/wp2511.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.26509/frbc-wp-202511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    2. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    3. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    5. Leo Krippner & Leif Anders Thorsrud, 2009. "Forecasting New Zealand's economic growth using yield curve information," Reserve Bank of New Zealand Discussion Paper Series DP2009/18, Reserve Bank of New Zealand.
    6. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    7. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    8. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    9. Maria Billstam & Kristina Frändén & Johan Samuelsson & Pär Österholm, 2017. "Quasi-Real-Time Data of the Economic Tendency Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 105-138, May.
    10. Tae-Hwy Lee & Yiyao Wang, 2019. "Evaluation of the Survey of Professional Forecasters in the Greenbook’s Loss Function," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 345-360, June.
    11. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    12. Michal Rubaszek & Pawel Skrzypczynski, 2007. "Can a simple DSGE model outperform Professional Forecasters?," Working Papers 5, Department of Applied Econometrics, Warsaw School of Economics.
    13. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    14. Christopher G. Gibbs, 2015. "Overcoming the Forecast Combination Puzzle: Lessons from the Time-Varying Effciency of Phillips Curve Forecasts of U.S. Inflation," Discussion Papers 2015-09, School of Economics, The University of New South Wales.
    15. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
    16. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    17. Tortorice Daniel Louis, 2012. "Unemployment Expectations and the Business Cycle," The B.E. Journal of Macroeconomics, De Gruyter, vol. 12(1), pages 1-49, January.
    18. Tierney, Heather L.R., 2011. "Real-time data revisions and the PCE measure of inflation," Economic Modelling, Elsevier, vol. 28(4), pages 1763-1773, July.
    19. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    20. Tierney, Heather L.R., 2009. "A Local Examination for Persistence in Exclusions-from-Core Measures of Inflation Using Real-Time Data," MPRA Paper 13383, University Library of Munich, Germany, revised 03 Feb 2009.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwq:99878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: 4D Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbclus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.