IDEAS home Printed from https://ideas.repec.org/p/fee/wpaper/1202.html
   My bibliography  Save this paper

A hidden Markov model for the detection of pure and mixed strategy play in games

Author

Listed:
  • Jason Shachat

    (Wang Yanan Institute for Studies in Economics and MOE Key Laboratory in Econometrics, Xiamen University)

  • J. Todd Swarthout

    (Department of Economics and Experimental Economics Center, Georgia State University)

  • Lijia Wei

    (Wang Yanan Institute for Studies in Economics and MOE Key Laboratory in Econometrics, Xiamen University)

Abstract

We propose a statistical model to assess whether individuals strategically use mixed strategies in repeated games. We formulate a hidden Markov model in which the latent state space contains both pure and mixed strategies, and allows switching between these states. We apply the model to data from an experiment in which human subjects repeatedly play a normal form game against a computer that always follows its part of the unique mixed strategy Nash equilibrium profile. Estimated results show significant mixed strategy play and non-stationary dynamics. We also explore the ability of the model to forecast action choice.

Suggested Citation

  • Jason Shachat & J. Todd Swarthout & Lijia Wei, 2012. "A hidden Markov model for the detection of pure and mixed strategy play in games," Working Papers 1202, Xiamen Unversity, The Wang Yanan Institute for Studies in Economics, Finance and Economics Experimental Laboratory, revised 07 Jul 2012.
  • Handle: RePEc:fee:wpaper:1202
    as

    Download full text from publisher

    File URL: http://feel.xmu.edu.cn/RePEc/wpaper/A_hidden_Markov_model_for_the_detection_of_pure_and_mixed_strategy_play_in_games.pdf
    File Function: 2012
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles Noussair & Marc Willinger, 2011. "Mixed strategies in an unprofitable game: an experiment," Working Papers 11-19, LAMETA, Universtiy of Montpellier, revised Nov 2011.
    2. Bar-Eli, Michael & Azar, Ofer H. & Ritov, Ilana & Keidar-Levin, Yael & Schein, Galit, 2007. "Action bias among elite soccer goalkeepers: The case of penalty kicks," Journal of Economic Psychology, Elsevier, vol. 28(5), pages 606-621, October.
    3. Binmore, Ken & Swierzbinski, Joe & Proulx, Chris, 2001. "Does Minimax Work? An Experimental Study," Economic Journal, Royal Economic Society, vol. 111(473), pages 445-464, July.
    4. Reinhard Selten & Thorsten Chmura, 2008. "Stationary Concepts for Experimental 2x2-Games," American Economic Review, American Economic Association, vol. 98(3), pages 938-966, June.
    5. P.-A. Chiappori, 2002. "Testing Mixed-Strategy Equilibria When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer," American Economic Review, American Economic Association, vol. 92(4), pages 1138-1151, September.
    6. Jason Shachat & J. Todd Swarthout, 2004. "Do we detect and exploit mixed strategy play by opponents?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 359-373, July.
    7. Ignacio Palacios-Huerta, 2003. "Professionals Play Minimax," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 395-415.
    8. Robert W. Rosenthal & Jason Shachat & Mark Walker, 2003. "Hide and seek in Arizona," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(2), pages 273-293, December.
    9. Morgan, John & Sefton, Martin, 2002. "An Experimental Investigation of Unprofitable Games," Games and Economic Behavior, Elsevier, vol. 40(1), pages 123-146, July.
    10. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    11. Yaw Nyarko & Andrew Schotter, 2002. "An Experimental Study of Belief Learning Using Elicited Beliefs," Econometrica, Econometric Society, vol. 70(3), pages 971-1005, May.
    12. Ochs Jack, 1995. "Games with Unique, Mixed Strategy Equilibria: An Experimental Study," Games and Economic Behavior, Elsevier, vol. 10(1), pages 202-217, July.
    13. Greiner, Ben, 2004. "An Online Recruitment System for Economic Experiments," MPRA Paper 13513, University Library of Munich, Germany.
    14. Shachat, Jason M., 2002. "Mixed Strategy Play and the Minimax Hypothesis," Journal of Economic Theory, Elsevier, vol. 104(1), pages 189-226, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Duffy & J. J. Naddeo & David Owens & John Smith, 2024. "Cognitive Load and Mixed Strategies: On Brains and Minimax," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 1-34, September.
    2. Knut Lehre Seip & Øyvind Grøn, 2016. "Leading the Game, Losing the Competition: Identifying Leaders and Followers in a Repeated Game," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2017. "Serial correlation in National Football League play calling and its effects on outcomes," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 69(C), pages 125-132.
    2. Sean Duffy & J. J. Naddeo & David Owens & John Smith, 2024. "Cognitive Load and Mixed Strategies: On Brains and Minimax," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 1-34, September.
    3. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2014. "Minimax on the gridiron: Serial correlation and its effects on outcomes in the National Football League," MPRA Paper 58907, University Library of Munich, Germany.
    4. Jason Shachat & J. Todd Swarthout & Lijia Wei, 2011. "Man versus Nash An experiment on the self-enforcing nature of mixed strategy equilibrium," Working Papers 1101, Xiamen Unversity, The Wang Yanan Institute for Studies in Economics, Finance and Economics Experimental Laboratory, revised 21 Feb 2011.
    5. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.
    6. Shachat, Jason & Swarthout, J. Todd, 2012. "Learning about learning in games through experimental control of strategic interdependence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 383-402.
    7. Charles Noussair & Marc Willinger, 2011. "Mixed strategies in an unprofitable game: an experiment," Working Papers 11-19, LAMETA, Universtiy of Montpellier, revised Nov 2011.
    8. Leonidas Spiliopoulos, 2018. "Randomization and serial dependence in professional tennis matches: Do strategic considerations, player rankings and match characteristics matter?," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(5), pages 413-427, September.
    9. repec:cup:judgdm:v:13:y:2018:i:5:p:413-427 is not listed on IDEAS
    10. Ofer Azar & Michael Bar-Eli, 2011. "Do soccer players play the mixed-strategy Nash equilibrium?," Applied Economics, Taylor & Francis Journals, vol. 43(25), pages 3591-3601.
    11. Yoshitaka Okano, 2016. "Re-examination of team’s play in a mixed-strategy game experiment," Applied Economics Letters, Taylor & Francis Journals, vol. 23(8), pages 601-604, May.
    12. Okano, Yoshitaka, 2013. "Minimax play by teams," Games and Economic Behavior, Elsevier, vol. 77(1), pages 168-180.
    13. John Wooders, 2010. "Does Experience Teach? Professionals and Minimax Play in the Lab," Econometrica, Econometric Society, vol. 78(3), pages 1143-1154, May.
    14. Spiliopoulos, Leonidas, 2008. "Do repeated game players detect patterns in opponents? Revisiting the Nyarko & Schotter belief elicitation experiment," MPRA Paper 6666, University Library of Munich, Germany.
    15. Van Essen, Matt & Wooders, John, 2015. "Blind stealing: Experience and expertise in a mixed-strategy poker experiment," Games and Economic Behavior, Elsevier, vol. 91(C), pages 186-206.
    16. Steven D. Levitt & John A. List & David H. Reiley, 2010. "What Happens in the Field Stays in the Field: Exploring Whether Professionals Play Minimax in Laboratory Experiments," Econometrica, Econometric Society, vol. 78(4), pages 1413-1434, July.
    17. repec:wyi:journl:002151 is not listed on IDEAS
    18. Kenneth Kovash & Steven D. Levitt, 2009. "Professionals Do Not Play Minimax: Evidence from Major League Baseball and the National Football League," NBER Working Papers 15347, National Bureau of Economic Research, Inc.
    19. Spiliopoulos, Leonidas, 2013. "Beyond fictitious play beliefs: Incorporating pattern recognition and similarity matching," Games and Economic Behavior, Elsevier, vol. 81(C), pages 69-85.
    20. Steven Levitt & John List & David Reiley, 2010. "What happens in the field stays in the field: Professionals do not play minimax in laboratory experiments," Artefactual Field Experiments 00080, The Field Experiments Website.
    21. Gallice, Andrea, 2007. "Best Responding to What? A Behavioral Approach to One Shot Play in 2x2 Games," Discussion Papers in Economics 1365, University of Munich, Department of Economics.
    22. Jung S You, 2021. "Random Actions in Experimental Zero-Sum Games," Journal of Economics and Behavioral Studies, AMH International, vol. 13(1), pages 69-81.

    More about this item

    Keywords

    Mixed Strategy; Nash Equilibrium; Experiment; Hidden Markov Model;
    All these keywords.

    JEL classification:

    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fee:wpaper:1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ashford (email available below). General contact details of provider: https://edirc.repec.org/data/wixmucn.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.