IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/78365.html
   My bibliography  Save this paper

Aligning order picking methods, incentive systems, and regulatory focus to increase performance

Author

Listed:
  • de Vries, J.
  • de Koster, M.B.M.
  • Stam, D.A.

Abstract

A unique controlled field experiment investigates order picking performance (in terms of productivity and quality). We examined three manual picker-to-parts order picking methods (parallel, zone, and dynamic zone picking) under two different incentive systems (competition- based versus cooperation-based) for pickers with different regulatory foci (prevention-focus versus promotion-focus). The study was carried out in a warehouse erected especially for the purposes of order picking research. Our results show that when using a parallel picking method a competition- based incentive system increases productivity and quality compared to a cooperation-based incentive system, and that when using a zone picking method it is more productive to use a cooperation- based incentive system. This pattern of results was especially pronounced for pickers with a dominant promotion focus. Dominantly prevention focused pickers, however, were more productive with a cooperation-based incentive system, irrespective of the picking method. Additionally, a cooperation-based incentive system delivered a low quality performance in zone picking, but a high quality performance in dynamic zone picking. The analyses demonstrate that by aligning order picking methods, incentive systems and regulatory focus, warehouses can improve productivity and quality, and reduce wage costs by up to 20%.

Suggested Citation

  • de Vries, J. & de Koster, M.B.M. & Stam, D.A., 2015. "Aligning order picking methods, incentive systems, and regulatory focus to increase performance," ERIM Report Series Research in Management ERS-2015-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:78365
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/78365/ERS-2015-009-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Angela Y. & Aaker, Jennifer L. & Gardner, Wendi L., 2000. "The Pleasures and Pains of Distinct Self-Construals: The Role of Interdependence in Regulatory Focus," Research Papers 1577r, Stanford University, Graduate School of Business.
    2. Edward P. Lazear, 2000. "Performance Pay and Productivity," American Economic Review, American Economic Association, vol. 90(5), pages 1346-1361, December.
    3. Jane, Chin-Chia & Laih, Yih-Wenn, 2005. "A clustering algorithm for item assignment in a synchronized zone order picking system," European Journal of Operational Research, Elsevier, vol. 166(2), pages 489-496, October.
    4. Kenneth L. Schultz & David C. Juran & John W. Boudreau, 1999. "The Effects of Low Inventory on the Development of Productivity Norms," Management Science, INFORMS, vol. 45(12), pages 1664-1678, December.
    5. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    6. Beersma, Bianca & Homan, Astrid C. & Van Kleef, Gerben A. & De Dreu, Carsten K.W., 2013. "Outcome interdependence shapes the effects of prevention focus on team processes and performance," Organizational Behavior and Human Decision Processes, Elsevier, vol. 121(2), pages 194-203.
    7. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    8. David L. Dickinson & R. Mark Isaac, 1998. "Absolute and relative rewards for individuals in team production," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 19(4-5), pages 299-310.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, M. & de Koster, M.B.M., 2007. "Performance Approximation and Design of Pick-and-Pass Order Picking Systems," ERIM Report Series Research in Management ERS-2007-082-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    3. De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
    4. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    5. Emmanuel Dechenaux & Dan Kovenock & Roman Sheremeta, 2015. "A survey of experimental research on contests, all-pay auctions and tournaments," Experimental Economics, Springer;Economic Science Association, vol. 18(4), pages 609-669, December.
    6. Kovács, András, 2011. "Optimizing the storage assignment in a warehouse served by milkrun logistics," International Journal of Production Economics, Elsevier, vol. 133(1), pages 312-318, September.
    7. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    8. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    9. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    10. Rafael Diaz, 2016. "Using dynamic demand information and zoning for the storage of non-uniform density stock keeping units," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2487-2498, April.
    11. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    12. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    13. Sebastian Henn & André Scholz & Meike Stuhlmann & Gerhard Wäscher, 2015. "A New Mathematical Programming Formulation for the Single-Picker Routing Problem in a Single-Block Layout," FEMM Working Papers 150005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    14. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    15. R de Koster & M Yu, 2008. "Minimizing makespan and throughput times at Aalsmeer flower auction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1182-1190, September.
    16. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2020. "Solving the joint order batching and picker routing problem, as a clustered vehicle routing problem," Working Papers 2020003, University of Antwerp, Faculty of Business and Economics.
    17. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    18. Dijkstra, Arjan S. & Roodbergen, Kees Jan, 2017. "Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 38-59.
    19. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    20. Sandra Hahn & André Scholz, 2017. "Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times," FEMM Working Papers 170006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    More about this item

    Keywords

    behavioral operations; warehousing; order picking; incentives;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:78365. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.