IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/117130.html
   My bibliography  Save this paper

Structural importance and evolution: an application to financial transaction networks

Author

Listed:
  • Seabrook, Isobel
  • Barucca, Paolo
  • Caccioli, Fabio

Abstract

A fundamental problem in the study of networks is the identification of important nodes. This is typically achieved using centrality metrics, which rank nodes in terms of their position in the network. This approach works well for static networks, that do not change over time, but does not consider the dynamics of the network. Here we propose instead to measure the importance of a node based on how much a change to its strength will impact the global structure of the network, which we measure in terms of the spectrum of its adjacency matrix. We apply our method to the identification of important nodes in equity transaction networks and show that, while it can still be computed from a static network, our measure is a good predictor of nodes subsequently transacting. This implies that static representations of temporal networks can contain information about their dynamics.

Suggested Citation

  • Seabrook, Isobel & Barucca, Paolo & Caccioli, Fabio, 2022. "Structural importance and evolution: an application to financial transaction networks," LSE Research Online Documents on Economics 117130, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:117130
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/117130/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Longfeng & Wang, Gang-Jin & Wang, Mingang & Bao, Weiqi & Li, Wei & Stanley, H. Eugene, 2018. "Stock market as temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1104-1112.
    2. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    3. Paolo Barucca & Fabrizio Lillo, 2015. "The organization of the interbank network and how ECB unconventional measures affected the e-MID overnight market," Papers 1511.08068, arXiv.org, revised Sep 2017.
    4. Daly, J. & Crane, M. & Ruskin, H.J., 2008. "Random matrix theory filters in portfolio optimisation: A stability and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4248-4260.
    5. Barfuss, Wolfram & Massara, Guido Previde & Di Matteo, T. & Aste, Tomaso, 2016. "Parsimonious modeling with information filtering networks," LSE Research Online Documents on Economics 68860, London School of Economics and Political Science, LSE Library.
    6. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    7. Bardoscia, Marco & Bianconi, Ginestra & Ferrara, Gerardo, 2018. "Multiplex network analysis of the UK OTC derivatives market," Bank of England working papers 726, Bank of England, revised 10 Sep 2019.
    8. Seabrook, Isobel E. & Barucca, Paolo & Caccioli, Fabio, 2021. "Evaluating structural edge importance in temporal networks," LSE Research Online Documents on Economics 112515, London School of Economics and Political Science, LSE Library.
    9. Alsayed, Ahmad & Higham, Desmond J., 2015. "Betweenness in time dependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 35-48.
    10. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    11. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seabrook, Isobel & Barucca, Paolo & Caccioli, Fabio, 2022. "Structural importance and evolution: An application to financial transaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Teye, Alfred Larm & Ahelegbey, Daniel Felix, 2017. "Detecting spatial and temporal house price diffusion in the Netherlands: A Bayesian network approach," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 56-64.
    3. Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022. "Risk spillovers and interconnectedness between systemically important institutions," Journal of Financial Stability, Elsevier, vol. 58(C).
    4. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Jalshayin Bhachech & Arnab Chakrabarti & Taisei Kaizoji & Anindya S. Chakrabarti, 2022. "Instability of networks: effects of sampling frequency and extreme fluctuations in financial data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-14, April.
    6. Ahelegbey, Daniel Felix & Giudici, Paolo & Hadji-Misheva, Branka, 2019. "Latent factor models for credit scoring in P2P systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 112-121.
    7. Lu, Ya-Nan & Li, Sai-Ping & Zhong, Li-Xin & Jiang, Xiong-Fei & Ren, Fei, 2018. "A clustering-based portfolio strategy incorporating momentum effect and market trend prediction," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 1-15.
    8. Nicola, Giancarlo & Cerchiello, Paola & Aste, Tomaso, 2020. "Information network modeling for U.S. banking systemic risk," LSE Research Online Documents on Economics 107563, London School of Economics and Political Science, LSE Library.
    9. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    10. Alessandro Ferracci & Giulio Cimini, 2021. "Systemic risk in interbank networks: disentangling balance sheets and network effects," Papers 2109.14360, arXiv.org, revised Sep 2022.
    11. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    12. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    13. Guerini, Mattia & Moneta, Alessio & Napoletano, Mauro & Roventini, Andrea, 2020. "The Janus-Faced Nature Of Debt: Results From A Data-Driven Cointegrated Svar Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 24(1), pages 24-54, January.
    14. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    15. D’Errico, Marco & Battiston, Stefano & Peltonen, Tuomas & Scheicher, Martin, 2018. "How does risk flow in the credit default swap market?," Journal of Financial Stability, Elsevier, vol. 35(C), pages 53-74.
    16. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves & Lee, Lung-Fei, 2011. "Criminal Networks: Who is the Key Player?," Research Papers in Economics 2011:7, Stockholm University, Department of Economics.
    17. Agnieszka Rusinowska & Rudolf Berghammer & Harrie de Swart & Michel Grabisch, 2011. "Social networks: Prestige, centrality, and influence (Invited paper)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00633859, HAL.
    18. Gabrielle Demange, 2018. "Contagion in Financial Networks: A Threat Index," Management Science, INFORMS, vol. 64(2), pages 955-970, February.
    19. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    20. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.

    More about this item

    Keywords

    node predictability; spectral perturbation; temporal network;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G00 - Financial Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:117130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.