IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimation of a Mixture via the Empirical Characteristic Function

  • Marine H. Carrasco


  • Jean-Pierre Florens


In many circumstances, the likelihood function does not have a simple tractable expression. The main examples discussed in the paper are the convolution and the mixture of distributions. Finite mixture models are commonly used to model data from a population composed of a finite number of homogeneous subpopulations. An example of application is the estimation of a cost function in presence of multiple technologies of production (see Beard, Caudill, and Gropper, 1991). Ignoring heterogeneity may lead to seriously misleading results. Convolution appears in models that include person-specific hetorogeneity that is not observable (see Lancaster, 1990). For such models, estimation using the characteristic function offers a nice alternative to maximum likelihood method. It has been shown by Feuerverger and McDunnough (1981) that the empirical characteristic function yields an efficient estimator when used with a specific weighting function. However, this weighting function depends on the likelihood which is of course unknown. This poses the problem of the implementation of this method. Here we show that the empirical characteristic function yields a continuum of moment conditions that can be handled by the method developed by Carrasco and Florens (1999). We simply estimate the parameters of the model by GMM based on this continuum of moment conditions. We show that this method delivers asymptotically efficient estimators while being relatively easy to implement. A close investigation shows that Carrasco-Florens' results gives a rationale to Feuerverger and McDunnough's approach and is much more general since it applies to any continuum of moments. Using our continuous GMM method avoids the explicit derivation of the optimal weighting function as in Feuerverger and McDunnough. We give a general method to estimate it from the data. Next, we allow for the presence of covariates in the model. We discuss the efficient estimation based on the conditional characteristic function conditionally on exogenous variables. As long as identifiability holds, our estimators reach the Cramer Rao efficiency bound for any choice of instruments. The issue on optimal instruments can be completely ignored here. The way we choose the weight in our GMM objective function guarantees efficiency. Finally, we intend to complete the paper by a Monte Carlo experiment in order to assess the small sample properties of our estimators.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 0514.

in new window

Date of creation: 01 Aug 2000
Handle: RePEc:ecm:wc2000:0514
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mandelbrot, Benoit B, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices: Comment," Econometrica, Econometric Society, vol. 41(1), pages 157-159, January.
  2. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
  3. Beard, T Randolph & Caudill, Steven B & Gropper, Daniel M, 1991. "Finite Mixture Estimation of Multiproduct Cost Functions," The Review of Economics and Statistics, MIT Press, vol. 73(4), pages 654-664, November.
  4. Morduch, J. & Stern, H.S., 1995. "Using Mixture Models to Detect Sex Bias in Health Outcomes in Bangladesh," Papers 513, Harvard - Institute for International Development.
  5. Mundlak, Yair & Yahav, Joseph A, 1981. "Random Effects, Fixed Effects, Convolution, and Separation," Econometrica, Econometric Society, vol. 49(6), pages 1399-1416, November.
  6. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(06), pages 797-834, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0514. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.