IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Parallel cartoons of fractal models of finance

  • Benoit B. Mandelbrot


Having been crafted to welcome a new scientific journal, this paper looks forward but requires no special prerequisite. The argument builds on a technical wrinkle (used earlier but explained here fully for the first time), namely, the author’s grid-bound variant of Brownian motion B(t). While B(t) itself is additive, this variant is a multiplicative recursive process the author calls a ‘‘cartoon.’’ Reliance on this and related cartoons allows a new perspicuous exposition of the various fractal/multifractal models for the variation of financial prices. These illustrations do not claim to represent reality in its full detail, but suffice to imitate and bring out its principal features, namely, long tailedness, long dependence, and clustering. The goal is to convince the reader that the fractals/multifractals are not an exotic technical nightmare that could be avoided. In fact, the author’s models arose successively as proper, ‘‘natural,’’ and even ‘‘unavoidable’’ generalization of the Brownian motion model of price variation. Considered within the context of those generalizations, the original Brownian comes out as very special and narrowly constricted, while the fractal/multifractal models come out as nearly as simple and parsimonious as the Brownian. The cartoons are stylized recursive variants of the author’s fractal/multifractal models, which are even more versatile and realistic. Copyright Springer-Verlag Berlin Heidelberg 2005

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Annals of Finance.

Volume (Year): 1 (2005)
Issue (Month): 2 (October)
Pages: 179-192

in new window

Handle: RePEc:kap:annfin:v:1:y:2005:i:2:p:179-192
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  2. T. Lux, 2001. "Power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 560-562.
  3. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  4. B. B. Mandelbrot, 2001. "Stochastic volatility, power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 558-559.
  5. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1997. "Large Deviations and the Distribution of Price Changes," Cowles Foundation Discussion Papers 1165, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:1:y:2005:i:2:p:179-192. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.