IDEAS home Printed from
   My bibliography  Save this paper

The Mean Variance Mixing GARCH (1,1) model


  • Lars Forsberg
  • Anders Eriksson


Here we present a general framework for a GARCH (1,1) type of process with innovations with a probability law of the mean- variance mixing type, therefore we call the process in question the mean variance mixing GARCH \ (1,1) or MVM GARCH\(1,1). One implication is a GARCH\ model with skewed innovations and constant mean dynamics. This is achieved without using a location parameter to compensate for time dependence that affects the mean dynamics. From a probabilistic viewpoint the idea is straightforward. We just construct our stochastic process from the desired behavior of the cumulants. Further we provide explicit expressions for the unconditional second to fourth cumulants for the process in question. In the paper we present a specification of the MVM-GARCH process where the mixing variable is of the inverse Gaussian type. On the basis on this assumption we can formulate a maximum likelihood based approach for estimating the process closely related to the approach used to estimate an ordinary GARCH (1,1). Under the distributional assumption that the mixing random process is an inverse Gaussian i.i.d process the MVM-GARCH process is then estimated on log return data from the Standard and Poor 500 index. An analysis for the conditional skewness and kurtosis implied by the process is also presented in the paper

Suggested Citation

  • Lars Forsberg & Anders Eriksson, 2004. "The Mean Variance Mixing GARCH (1,1) model," Econometric Society 2004 Australasian Meetings 323, Econometric Society.
  • Handle: RePEc:ecm:ausm04:323

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    3. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Lee, Tom K Y & Tse, Y K, 1991. "Term Structure of Interest Rates in the Singapore Asian Dollar Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 143-152, April-Jun.
    7. Badrinath, S G & Chatterjee, Sangit, 1988. "On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index," The Journal of Business, University of Chicago Press, vol. 61(4), pages 451-472, October.
    8. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    9. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    10. Andersson, Jonas, 2001. "On the Normal Inverse Gaussian Stochastic Volatility Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 44-54, January.
    11. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    12. Kraus, Alan & Litzenberger, Robert H, 1976. "Skewness Preference and the Valuation of Risk Assets," Journal of Finance, American Finance Association, vol. 31(4), pages 1085-1100, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    GARCH Skewness Conditional Skewness;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:323. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.