IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Power in High-dimensional testing Problems

Listed author(s):
  • Anders Bredahl Kock
  • David Preinerstorfer

Fan et al. (2015) recently introduced a remarkable method for increasing asymptotic power of tests in high-dimensional testing problems. If applicable to a given test, their power enhancement principle leads to an improved test that has the same asymptotic size, uniformly non-inferior asymptotic power, and is consistent against a strictly broader range of alternatives than the initially given test. We study under which conditions this method can be applied and show the following: In asymptotic regimes where the dimensionality of the parameter space is fixed as sample size increases, there often exist tests that can not be further improved with the power enhancement principle. When the dimensionality of the parameter space can increase with sample size, however, there typically is a range of "slowly" diverging rates for which every test with asymptotic size smaller than one can be improved with the power enhancement principle. While the latter statement in general does not extend to all rates at which the dimensionality increases with sample size, we give sufficient conditions under which this is the case.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/260442/3/2017-42-KOCK_PREINERSTORFER-power.pdf
File Function: Full text for the whole work, or for a work part
Download Restriction: no

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number ECARES 2017-42.

as
in new window

Length: 22 p.
Date of creation: Nov 2017
Publication status: Published by:
Handle: RePEc:eca:wpaper:2013/260442
Contact details of provider: Postal:
Av. F.D., Roosevelt, 39, 1050 Bruxelles

Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Swensen, Anders Rygh, 1985. "The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 54-70, February.
  2. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
  3. Pinelis, Iosif, 2014. "Schur2-concavity properties of Gaussian measures, with applications to hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 384-397.
  4. Bernard Garel & Marc Hallin, 1995. "Local asymptotic normality of multivariate ARMA processes with a linear trend," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 551-579, September.
  5. Chen, Song Xi & Li, Jun & Zhong, Pingshou, 2014. "Two-Sample Tests for High Dimensional Means with Thresholding and Data Transformation," MPRA Paper 59815, University Library of Munich, Germany.
  6. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
  7. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, December.
  8. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
  9. Pupashenko, Daria & Ruckdeschel, Peter & Kohl, Matthias, 2015. "L2 differentiability of generalized linear models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 155-164.
  10. Christine Cutting & Davy Paindaveine & Thomas Verdebout, 2015. "Testing Uniformity on High-Dimensional Spheres against Contiguous Rotationally Symmetric Alternatives," Working Papers ECARES ECARES 2015-04, ULB -- Universite Libre de Bruxelles.
  11. Marc Hallin & Masanobu Taniguchi & Abdeslam Serroukh & Kokyo Choy, 1999. "Local asymptotic normality for regression models with long-memory disturbance, with statistical applications," ULB Institutional Repository 2013/2091, ULB -- Universite Libre de Bruxelles.
  12. Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
  13. Jianqing Fan & Yuan Liao & Jiawei Yao, 2015. "Power Enhancement in High‐Dimensional Cross‐Sectional Tests," Econometrica, Econometric Society, vol. 83(4), pages 1497-1541, July.
  14. Srivastava, Muni S. & Katayama, Shota & Kano, Yutaka, 2013. "A two sample test in high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 349-358.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/260442. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.