IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.03700.html
   My bibliography  Save this paper

Superconsistency of Tests in High Dimensions

Author

Listed:
  • Anders Bredahl Kock
  • David Preinerstorfer

Abstract

To assess whether there is some signal in a big database, aggregate tests for the global null hypothesis of no effect are routinely applied in practice before more specialized analysis is carried out. Although a plethora of aggregate tests is available, each test has its strengths but also its blind spots. In a Gaussian sequence model, we study whether it is possible to obtain a test with substantially better consistency properties than the likelihood ratio (i.e., Euclidean norm based) test. We establish an impossibility result, showing that in the high-dimensional framework we consider, the set of alternatives for which a test may improve upon the likelihood ratio test -- that is, its superconsistency points -- is always asymptotically negligible in a relative volume sense.

Suggested Citation

  • Anders Bredahl Kock & David Preinerstorfer, 2021. "Superconsistency of Tests in High Dimensions," Papers 2106.03700, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2106.03700
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.03700
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruth Heller & Nilanjan Chatterjee & Abba Krieger & Jianxin Shi, 2018. "Post-Selection Inference Following Aggregate Level Hypothesis Testing in Large-Scale Genomic Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1770-1783, October.
    2. Ian J. Barnett & Xihong Lin, 2014. "Analytical p-value calculation for the higher criticism test in finite-d problems," Biometrika, Biometrika Trust, vol. 101(4), pages 964-970.
    3. Anders Bredahl Kock & David Preinerstorfer, 2019. "Power in High‐Dimensional Testing Problems," Econometrica, Econometric Society, vol. 87(3), pages 1055-1069, May.
    4. Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
    5. Paul R. Rosenbaum, 2008. "Testing hypotheses in order," Biometrika, Biometrika Trust, vol. 95(1), pages 248-252.
    6. Ruth Heller & Amit Meir & Nilanjan Chatterjee, 2019. "Post‐selection estimation and testing following aggregate association tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 547-573, July.
    7. Nicolai Meinshausen, 2008. "Hierarchical testing of variable importance," Biometrika, Biometrika Trust, vol. 95(2), pages 265-278.
    8. Yekutieli, Daniel, 2008. "Hierarchical False Discovery RateControlling Methodology," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 309-316, March.
    9. Jianqing Fan & Yuan Liao & Jiawei Yao, 2015. "Power Enhancement in High‐Dimensional Cross‐Sectional Tests," Econometrica, Econometric Society, vol. 83(4), pages 1497-1541, July.
    10. Vladimir Vovk & Ruodu Wang, 0. "Combining p-values via averaging," Biometrika, Biometrika Trust, vol. 107(4), pages 791-808.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thilo Reinschlussel & Martin C. Arnold, 2024. "Information-Enriched Selection of Stationary and Non-Stationary Autoregressions using the Adaptive Lasso," Papers 2402.16580, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay Bartroff & Jinlin Song, 2016. "A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 3-19, March.
    2. Ge, S. & Li, S. & Linton, O., 2020. "A Dynamic Network of Arbitrage Characteristics," Cambridge Working Papers in Economics 2060, Faculty of Economics, University of Cambridge.
    3. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    4. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.
    5. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    6. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
    7. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    8. David Preinerstorfer, 2018. "How to avoid the zero-power trap in testing for correlation," Papers 1812.10752, arXiv.org.
    9. Rina Foygel Barber & Aaditya Ramdas, 2017. "The p-filter: multilayer false discovery rate control for grouped hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1247-1268, September.
    10. Goeman Jelle J. & Finos Livio, 2012. "The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-18, January.
    11. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.
    12. Ruth Heller, 2020. "Comments on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 51-55, March.
    13. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    14. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Rute M. Caeiro & Pedro C. Vicente, 2020. "Knowledge of vitamin A deficiency and crop adoption: Evidence from a field experiment in Mozambique," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 175-190, March.
    16. Jessamyn Schaller & Mariana Zerpa, 2019. "Short-Run Effects of Parental Job Loss on Child Health," American Journal of Health Economics, MIT Press, vol. 5(1), pages 8-41, Winter.
    17. Mayya Zhilova, 2015. "Simultaneous likelihood-based bootstrap confidence sets for a large number of models," SFB 649 Discussion Papers SFB649DP2015-031, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    18. Jaschke Philipp & Sulin Sardoschau & Marco Tabellini, 2021. "Scared Straight? Threat and Assimilation of Refugees in Germany," RF Berlin - CReAM Discussion Paper Series 2136, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
    19. Fabian Kosse & Thomas Deckers & Pia Pinger & Hannah Schildberg-Hörisch & Armin Falk, 2020. "The Formation of Prosociality: Causal Evidence on the Role of Social Environment," Journal of Political Economy, University of Chicago Press, vol. 128(2), pages 434-467.
    20. Grácio, Matilde & Vicente, Pedro C., 2021. "Information, get-out-the-vote messages, and peer influence: Causal effects on political behavior in Mozambique," Journal of Development Economics, Elsevier, vol. 151(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.03700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.