IDEAS home Printed from https://ideas.repec.org/p/ebg/heccah/0885.html
   My bibliography  Save this paper

Structural Equation Modelling for small samples

Author

Listed:
  • Michel, TENENHAUS

Abstract

Two complementary schools have come to the fore in the field of Structural Equation Modelling (SEM): covariance-based SEM and component-based SEM. The first approach developed around Karl Jöreskog. It can be considered as a generalisation of both principal component analysis and factor analysis to the case of several data tables connected by causal links. The second approach developed around Herman Wold under the name "PLS" (Partial Least Squares). More recently Hwang and Takane (2004) have proposed a new method named Generalized Structural Component Analysis. This second approach is a generalisation of principal component analysis (PCA) to the case of several data tables connected by causal links. Covariance-based SEM is usually used with an objective of model validation and needs a large sample (what is large varies from an author to another: more than 100 subjects and preferably more than 200 subjects are often mentioned). Component-based SEM is mainly used for score computation and can be carried out on very small samples. A research based on 6 subjects has been published by Tenenhaus, Pagès, Ambroisine & Guinot (2005) and will be used in this paper. In 1996, Roderick McDonald published a paper in which he showed how to carry out a PCA using the ULS (Unweighted Least Squares) criterion in the covariance-based SEM approach. He concluded from this that he could in fact use the covariance-based SEM approach to obtain results similar to those of the PLS approach, but with a precise optimisation criterion in place of an algorithm with not well known properties. In this research, we will explore the use of ULS-SEM and PLS on small samples. First experiences have already shown that score computation and bootstrap validation are very insensitive to the choice of the method. We will also study the very important contribution of these methods to multiblock analysis

Suggested Citation

  • Michel, TENENHAUS, 2007. "Structural Equation Modelling for small samples," HEC Research Papers Series 885, HEC Paris.
  • Handle: RePEc:ebg:heccah:0885
    as

    Download full text from publisher

    File URL: http://www.hec.fr/var/fre/storage/original/application/738fafc0860e8ffc1c8f7092a130cd35.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
    2. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyeongcheol Cho & Heungsun Hwang & Marko Sarstedt & Christian M. Ringle, 2020. "Cutoff criteria for overall model fit indexes in generalized structured component analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(4), pages 189-202, December.
    2. Pietro Giorgio Lovaglio & Gianmarco Vacca & Stefano Verzillo, 2016. "Human capital estimation in higher education," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 465-489, December.
    3. Jörg Henseler, 2010. "On the convergence of the partial least squares path modeling algorithm," Computational Statistics, Springer, vol. 25(1), pages 107-120, March.
    4. Necmi Kemal Avkiran, 2018. "An in-depth discussion and illustration of partial least squares structural equation modeling in health care," Health Care Management Science, Springer, vol. 21(3), pages 401-408, September.
    5. Aurélie Kessous & Fanny Magnoni & Pierre Valette-Florence, 2016. "Brand Nostalgia and Consumers Relationships to Luxury Brands : A Continuous and Categorical Moderated Mediation Approach," Post-Print hal-01472020, HAL.
    6. Fattore, Marco & Pelagatti, Matteo & Vittadini, Giorgio, 2018. "A least squares approach to latent variables extraction in formative–reflective models," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 84-97.
    7. Annie Tubadji & Peter Nijkamp, 2015. "Cultural impact on regional development: application of a PLS-PM model to Greece," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(3), pages 687-720, May.
    8. Debora Bettiga & Lucio Lamberti & Emanuele Lettieri, 2020. "Individuals’ adoption of smart technologies for preventive health care: a structural equation modeling approach," Health Care Management Science, Springer, vol. 23(2), pages 203-214, June.
    9. Vittadini, Giorgio & Minotti, Simona C. & Fattore, Marco & Lovaglio, Pietro G., 2007. "On the relationships among latent variables and residuals in PLS path modeling: The formative-reflective scheme," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5828-5846, August.
    10. Adam Malešević & Dušan Barać & Dragan Soleša & Ema Aleksić & Marijana Despotović-Zrakić, 2021. "Adopting xRM in Higher Education: E-Services Outside the Classroom," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    11. Oubrich, Mourad & Hakmaoui, Abdelati & Benhayoun, Lamiae & Solberg Söilen, Klaus & Abdulkader, Bisan, 2021. "Impacts of leadership style, organizational design and HRM practices on knowledge hiding: The indirect roles of organizational justice and competitive work environment," Journal of Business Research, Elsevier, vol. 137(C), pages 488-499.
    12. Claudio Vitari & Elisabetta Raguseo, 2016. "Big data value and financial performance: an empirical investigation [Digital data, dynamic capability and financial performance: an empirical investigation in the era of Big Data]," Post-Print halshs-01923271, HAL.
    13. Martins, José & Costa, Catarina & Oliveira, Tiago & Gonçalves, Ramiro & Branco, Frederico, 2019. "How smartphone advertising influences consumers' purchase intention," Journal of Business Research, Elsevier, vol. 94(C), pages 378-387.
    14. Amir Louizi & Radhouane Kammoun, 2016. "Evaluation of corporate governance systems by credit rating agencies," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 20(2), pages 363-385, June.
    15. Sengazhani Murugesan Vadivel & Aloysius Henry Sequeira & Robert Rajkumar Sakkariyas & Kirubaharan Boobalan, 2022. "Impact of lean service, workplace environment, and social practices on the operational performance of India post service industry," Annals of Operations Research, Springer, vol. 315(2), pages 2219-2244, August.
    16. Gupta, Prashant & Seetharaman, A. & Raj, John Rudolph, 2013. "The usage and adoption of cloud computing by small and medium businesses," International Journal of Information Management, Elsevier, vol. 33(5), pages 861-874.
    17. Asif Khan & Chih-Cheng Chen & Kwanrat Suanpong & Athapol Ruangkanjanases & Santhaya Kittikowit & Shih-Chih Chen, 2021. "The Impact of CSR on Sustainable Innovation Ambidexterity: The Mediating Role of Sustainable Supply Chain Management and Second-Order Social Capital," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    18. Chen, Shih-Chih & Hung, Chung-Wen, 2016. "Elucidating the factors influencing the acceptance of green products: An extension of theory of planned behavior," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 155-163.
    19. P. A. Ferrari & S. Salini, 2008. "Measuring Service Quality: The Opinion of Europeans about Utilities," Working Papers 2008.36, Fondazione Eni Enrico Mattei.
    20. Bronzo, Marcelo & de Resende, Paulo Tarso Vilela & de Oliveira, Marcos Paulo Valadares & McCormack, Kevin P. & de Sousa, Paulo Renato & Ferreira, Reinaldo Lopes, 2013. "Improving performance aligning business analytics with process orientation," International Journal of Information Management, Elsevier, vol. 33(2), pages 300-307.

    More about this item

    Keywords

    Multi-block analysis; PLS path modelling; Structural Equation Modelling; Unweighted Least Squares;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:heccah:0885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antoine Haldemann (email available below). General contact details of provider: https://edirc.repec.org/data/hecpafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.