IDEAS home Printed from
   My bibliography  Save this paper

Structural Equation Modelling for small samples


  • Michel, TENENHAUS


Two complementary schools have come to the fore in the field of Structural Equation Modelling (SEM): covariance-based SEM and component-based SEM. The first approach developed around Karl Jöreskog. It can be considered as a generalisation of both principal component analysis and factor analysis to the case of several data tables connected by causal links. The second approach developed around Herman Wold under the name "PLS" (Partial Least Squares). More recently Hwang and Takane (2004) have proposed a new method named Generalized Structural Component Analysis. This second approach is a generalisation of principal component analysis (PCA) to the case of several data tables connected by causal links. Covariance-based SEM is usually used with an objective of model validation and needs a large sample (what is large varies from an author to another: more than 100 subjects and preferably more than 200 subjects are often mentioned). Component-based SEM is mainly used for score computation and can be carried out on very small samples. A research based on 6 subjects has been published by Tenenhaus, Pagès, Ambroisine & Guinot (2005) and will be used in this paper. In 1996, Roderick McDonald published a paper in which he showed how to carry out a PCA using the ULS (Unweighted Least Squares) criterion in the covariance-based SEM approach. He concluded from this that he could in fact use the covariance-based SEM approach to obtain results similar to those of the PLS approach, but with a precise optimisation criterion in place of an algorithm with not well known properties. In this research, we will explore the use of ULS-SEM and PLS on small samples. First experiences have already shown that score computation and bootstrap validation are very insensitive to the choice of the method. We will also study the very important contribution of these methods to multiblock analysis

Suggested Citation

  • Michel, TENENHAUS, 2007. "Structural Equation Modelling for small samples," HEC Research Papers Series 885, HEC Paris.
  • Handle: RePEc:ebg:heccah:0885

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    2. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jörg Henseler, 2010. "On the convergence of the partial least squares path modeling algorithm," Computational Statistics, Springer, vol. 25(1), pages 107-120, March.
    2. Vittadini, Giorgio & Minotti, Simona C. & Fattore, Marco & Lovaglio, Pietro G., 2007. "On the relationships among latent variables and residuals in PLS path modeling: The formative-reflective scheme," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5828-5846, August.
    3. Chen, Shih-Chih & Hung, Chung-Wen, 2016. "Elucidating the factors influencing the acceptance of green products: An extension of theory of planned behavior," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 155-163.
    4. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    5. Zamrudi Zakky & Wicaksono Teguh, 2018. "Promoting the Use of Social Commerce on SME in the Context of Logistics: UTAUT Model Examination," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 9(2), pages 73-82, November.
    6. Paul, Michael & Hennig-Thurau, Thorsten & Groth, Markus, 2015. "Tightening or loosening the “iron cage”? The impact of formal and informal display controls on service customers," Journal of Business Research, Elsevier, vol. 68(5), pages 1062-1073.
    7. Mohsin, Asad & Lengler, Jorge & Aguzzoli, Roberta, 2015. "Staff turnover in hotels: Exploring the quadratic and linear relationships," Tourism Management, Elsevier, vol. 51(C), pages 35-48.
    8. Jakobowicz, Emmanuel & Derquenne, Christian, 2007. "A modified PLS path modeling algorithm handling reflective categorical variables and a new model building strategy," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3666-3678, May.
    9. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    10. Mohammad Iranmanesh & Suhaiza Zailani & Soroush Moeinzadeh & Davoud Nikbin, 2017. "Effect of green innovation on job satisfaction of electronic and electrical manufacturers’ employees through job intensity: personal innovativeness as moderator," Review of Managerial Science, Springer, vol. 11(2), pages 299-313, March.
    11. Bettiga, Debora & Lamberti, Lucio & Noci, Giuliano, 2017. "Do mind and body agree? Unconscious versus conscious arousal in product attitude formation," Journal of Business Research, Elsevier, vol. 75(C), pages 108-117.
    12. Ho, Mia Hsiao-Wen & Wang, Fatima, 2015. "Unpacking knowledge transfer and learning paradoxes in international strategic alliances: Contextual differences matter," International Business Review, Elsevier, vol. 24(2), pages 287-297.
    13. Mooradian, Todd & Matzler, Kurt & Uzelac, Borislav & Bauer, Florian, 2016. "Perspiration and inspiration: Grit and innovativeness as antecedents of entrepreneurial success," Journal of Economic Psychology, Elsevier, vol. 56(C), pages 232-243.
    14. Anna Lejpras & Andreas Stephan, 2011. "Locational conditions, cooperation, and innovativeness: evidence from research and company spin-offs," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 543-575, June.
    15. Gyeongcheol Cho & Heungsun Hwang & Marko Sarstedt & Christian M. Ringle, 2020. "Cutoff criteria for overall model fit indexes in generalized structured component analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(4), pages 189-202, December.
    16. Blanco-Oliver, Antonio & Irimia-Dieguez, Ana & Reguera-Alvarado, Nuria, 2016. "Prediction-oriented PLS path modeling in microfinance research," Journal of Business Research, Elsevier, vol. 69(10), pages 4643-4649.
    17. Horn, Philipp & Scheffler, Paul & Schiele, Holger, 2014. "Internal integration as a pre-condition for external integration in global sourcing: A social capital perspective," International Journal of Production Economics, Elsevier, vol. 153(C), pages 54-65.
    18. Mikulić, Josip & Prebežac, Darko, 2011. "What drives passenger loyalty to traditional and low-cost airlines? A formative partial least squares approach," Journal of Air Transport Management, Elsevier, vol. 17(4), pages 237-240.
    19. Kwanghee Jung & Yoshio Takane & Heungsun Hwang & Todd Woodward, 2012. "Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 827-848, October.
    20. Ciabuschi, Francesco & Dellestrand, Henrik & Kappen, Philip, 2012. "The good, the bad, and the ugly: Technology transfer competence, rent-seeking, and bargaining power," Journal of World Business, Elsevier, vol. 47(4), pages 664-674.

    More about this item


    Multi-block analysis; PLS path modelling; Structural Equation Modelling; Unweighted Least Squares;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:heccah:0885. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antoine Haldemann (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.