IDEAS home Printed from https://ideas.repec.org/p/ebg/heccah/0885.html
   My bibliography  Save this paper

Structural Equation Modelling for small samples

Author

Listed:
  • Michel, TENENHAUS

    ()

Abstract

Two complementary schools have come to the fore in the field of Structural Equation Modelling (SEM): covariance-based SEM and component-based SEM. The first approach developed around Karl Jöreskog. It can be considered as a generalisation of both principal component analysis and factor analysis to the case of several data tables connected by causal links. The second approach developed around Herman Wold under the name "PLS" (Partial Least Squares). More recently Hwang and Takane (2004) have proposed a new method named Generalized Structural Component Analysis. This second approach is a generalisation of principal component analysis (PCA) to the case of several data tables connected by causal links. Covariance-based SEM is usually used with an objective of model validation and needs a large sample (what is large varies from an author to another: more than 100 subjects and preferably more than 200 subjects are often mentioned). Component-based SEM is mainly used for score computation and can be carried out on very small samples. A research based on 6 subjects has been published by Tenenhaus, Pagès, Ambroisine & Guinot (2005) and will be used in this paper. In 1996, Roderick McDonald published a paper in which he showed how to carry out a PCA using the ULS (Unweighted Least Squares) criterion in the covariance-based SEM approach. He concluded from this that he could in fact use the covariance-based SEM approach to obtain results similar to those of the PLS approach, but with a precise optimisation criterion in place of an algorithm with not well known properties. In this research, we will explore the use of ULS-SEM and PLS on small samples. First experiences have already shown that score computation and bootstrap validation are very insensitive to the choice of the method. We will also study the very important contribution of these methods to multiblock analysis

Suggested Citation

  • Michel, TENENHAUS, 2007. "Structural Equation Modelling for small samples," Les Cahiers de Recherche 885, HEC Paris.
  • Handle: RePEc:ebg:heccah:0885
    as

    Download full text from publisher

    File URL: http://www.hec.fr/var/fre/storage/original/application/738fafc0860e8ffc1c8f7092a130cd35.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    2. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Multi-block analysis; PLS path modelling; Structural Equation Modelling; Unweighted Least Squares;

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:heccah:0885. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Antoine Haldemann). General contact details of provider: http://edirc.repec.org/data/hecpafr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.