IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1185.html
   My bibliography  Save this paper

Evidence of Market Power in the Atlantic Steam Coal Market Using Oligopoly Models with a Competitive Fringe

Author

Listed:
  • Clemens Haftendorn

Abstract

Before 2004 South Africa was the dominant steam coal exporter to the European market. However a new market situation with rising global demand and prices makes room for a new entrant: Russia. The hypothesis investigated in this paper is that the three incumbent dominant firms located in South Africa and Colombia reacted to that new situation by exerting market power and withheld quantities from the market in 2004 and 2005. Three market structure scenarios of oligopoly with a competitive fringe are developed to investigate this hypothesis: a Stackelberg model with a cartel, a Stackelberg model with a Cournot-oligopoly as leader and a Nash-bargaining model. The model with a Cournot oligopoly as leader delivers the best reproduction of the actual market situation meaning that the dominant players exert market power in a non-cooperative way without profit sharing. Furthermore some methodological clarifications regarding the modeling of markets with dominant players and a competitive fringe are made. In particular we show that the use of mixed aggregated conjectural variations can lead to outcomes that are inconsistent with the actions of rational profit-maximizing players.

Suggested Citation

  • Clemens Haftendorn, 2012. "Evidence of Market Power in the Atlantic Steam Coal Market Using Oligopoly Models with a Competitive Fringe," Discussion Papers of DIW Berlin 1185, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1185
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.392226.de/dp1185.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egging, Ruud & Holz, Franziska & Gabriel, Steven A., 2010. "The World Gas Model," Energy, Elsevier, vol. 35(10), pages 4016-4029.
    2. Victor DeMiguel & Huifu Xu, 2009. "A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application," Operations Research, INFORMS, vol. 57(5), pages 1220-1235, October.
    3. Egging, Ruud & Gabriel, Steven A. & Holz, Franziska & Zhuang, Jifang, 2008. "A complementarity model for the European natural gas market," Energy Policy, Elsevier, vol. 36(7), pages 2385-2414, July.
    4. Andrew F. Daughety, 1985. "Reconsidering Cournot: The Cournot Equilibrium is Consistent," RAND Journal of Economics, The RAND Corporation, vol. 16(3), pages 368-379, Autumn.
    5. Yihsu Chen & Benjamin Hobbs & Sven Leyffer & Todd Munson, 2006. "Leader-Follower Equilibria for Electric Power and NO x Allowances Markets," Computational Management Science, Springer, vol. 3(4), pages 307-330, September.
    6. Ekawan, Rudianto & Duchene, Michel, 2006. "The evolution of hard coal trade in the Atlantic market," Energy Policy, Elsevier, vol. 34(13), pages 1487-1498, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huppmann, Daniel, 2013. "Endogenous shifts in OPEC market power - A Stackelberg oligopoly with fringe," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79758, Verein für Socialpolitik / German Economic Association.
    2. Franziska Holz & Clemens Haftendorn & Roman Mendelevitch & Christian von Hirschhausen, 2016. "A Model of the International Steam Coal Market (COALMOD-World)," Data Documentation 85, DIW Berlin, German Institute for Economic Research.
    3. Maryke Rademeyer & Richard Minnitt & Rosemary Falcon, 2021. "Multi-product coal distribution and price discovery for the domestic market via mathematical optimisation," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 113-126, April.
    4. Christian Growitsch & Harald Hecking & Timo Panke, 2014. "Supply Disruptions and Regional Price Effects in a Spatial Oligopoly—An Application to the Global Gas Market," Review of International Economics, Wiley Blackwell, vol. 22(5), pages 944-975, November.
    5. Maryke C. Rademeyer, 2021. "Investigating the outcome for South African coal supply to the domestic market when faced with declining demand for exported coal," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(3), pages 441-453, October.
    6. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    2. Ibrahim Abada, 2012. "A stochastic generalized Nash-Cournot model for the northwestern European natural gas markets with a fuel substitution demand function: The S-GaMMES model," Working Papers 1202, Chaire Economie du climat.
    3. Adrienn Selei & Borbála Tóth & Gustav Resch & László Szabó & Lukas Liebmann & Péter Kaderják, 2017. "How far is mitigation of Russian gas dependency possible through energy efficiency and renewable policies assuming different gas market structures?," Energy & Environment, , vol. 28(1-2), pages 54-69, March.
    4. Olufolajimi Oke & Daniel Huppmann & Max Marshall & Ricky Poulton & Sauleh Siddiqui, 2019. "Multimodal Transportation Flows in Energy Networks with an Application to Crude Oil Markets," Networks and Spatial Economics, Springer, vol. 19(2), pages 521-555, June.
    5. Veronika Grimm & Lars Schewe & Martin Schmidt & Gregor Zöttl, 2019. "A multilevel model of the European entry-exit gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 223-255, April.
    6. Guo, Yingjian & Hawkes, Adam, 2019. "Asset stranding in natural gas export facilities: An agent-based simulation," Energy Policy, Elsevier, vol. 132(C), pages 132-155.
    7. Böttger, T. & Grimm, V. & Kleinert, T. & Schmidt, M., 2022. "The cost of decoupling trade and transport in the European entry-exit gas market with linear physics modeling," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1095-1111.
    8. Christian Growitsch & Harald Hecking & Timo Panke, 2014. "Supply Disruptions and Regional Price Effects in a Spatial Oligopoly—An Application to the Global Gas Market," Review of International Economics, Wiley Blackwell, vol. 22(5), pages 944-975, November.
    9. Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
    10. E. Allevi & L. Boffino & M. E. Giuli & G. Oggioni, 2018. "Evaluating the impacts of the external supply risk in a natural gas supply chain: the case of the Italian market," Journal of Global Optimization, Springer, vol. 70(2), pages 347-384, February.
    11. Baltensperger, Tobias & Füchslin, Rudolf M. & Krütli, Pius & Lygeros, John, 2016. "Multiplicity of equilibria in conjectural variations models of natural gas markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 646-656.
    12. Ibrahim Abada & Steven Gabriel & Vincent Briat & Olivier Massol, 2013. "A Generalized Nash–Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model," Networks and Spatial Economics, Springer, vol. 13(1), pages 1-42, March.
    13. Guo, Yingjian & Hawkes, Adam, 2019. "The impact of demand uncertainties and China-US natural gas tariff on global gas trade," Energy, Elsevier, vol. 175(C), pages 205-217.
    14. Gong, Chengzhu & Wu, Desheng & Gong, Nianjiao & Qi, Rui, 2020. "Multi-agent mixed complementary simulation of natural gas upstream market liberalization in China," Energy, Elsevier, vol. 200(C).
    15. Egging-Bratseth, Ruud & Baltensperger, Tobias & Tomasgard, Asgeir, 2020. "Solving oligopolistic equilibrium problems with convex optimization," European Journal of Operational Research, Elsevier, vol. 284(1), pages 44-52.
    16. Abrell, Jan & Chavaz, Léo & Weigt, Hannes, 2019. "Dealing with Supply Disruptions on the European Natural Gas Market: Infrastructure Investments or Coordinated Policies?," Working papers 2019/11, Faculty of Business and Economics - University of Basel.
    17. Feijoo, Felipe & Iyer, Gokul C. & Avraam, Charalampos & Siddiqui, Sauleh A. & Clarke, Leon E. & Sankaranarayanan, Sriram & Binsted, Matthew T. & Patel, Pralit L. & Prates, Nathalia C. & Torres-Alfaro,, 2018. "The future of natural gas infrastructure development in the United states," Applied Energy, Elsevier, vol. 228(C), pages 149-166.
    18. Paulus, Moritz & Trueby, Johannes & Growitsch, Christian, 2011. "Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade," EWI Working Papers 2011-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. Holz, Franziska & Richter, Philipp M. & Egging, Ruud, 2016. "The Role of Natural Gas in a Low-Carbon Europe: Infrastructure and Supply Security," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37(SI37), pages 33-59.
    20. Gabriel, S.A. & Rosendahl, K.E. & Egging, Ruud & Avetisyan, H.G. & Siddiqui, S., 2012. "Cartelization in gas markets: Studying the potential for a “Gas OPEC”," Energy Economics, Elsevier, vol. 34(1), pages 137-152.

    More about this item

    Keywords

    Atlantic coal market; partial equilibrium modeling; market power;
    All these keywords.

    JEL classification:

    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • L72 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Other Nonrenewable Resources
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.