IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2467.html
   My bibliography  Save this paper

Local Overidentification and Efficiency Gains in Modern Causal Inference and Data Combination

Author

Listed:
  • Xiaohong Chen

    (Yale University)

  • Haitian Xie

    (Peking University)

Abstract

This paper studies nonparametric local (over-)identification, in the sense of Chen and Santos (2018), and the associated semiparametric efficiency in modern causal frameworks. We develop a unified approach that begins by translating structural models with latent variables into their induced statistical models of observables and then analyzes local overidentification through conditional moment restrictions. We apply this approach to three leading models: (i) the general treatment model under unconfoundedness, (ii) the negative control model, and (iii) the long-term causal inference model under unobserved confounding. The first design yields a locally just-identified statistical model, implying that all regular asymptotically linear estimators of the treatment effect share the same asymptotic variance, equal to the (trivial) semiparametric efficiency bound. In contrast, the latter two models involve nonparametric endogeneity and are naturally locally overidentified; consequently, some doubly robust orthogonal moment estimators of the average treatment effect are inefficient. Whereas existing work typically imposes strong conditions to restore just-identification before deriving the efficiency bound, we relax such assumptions and characterize the general efficiency bound, along with efficient estimators, in the overidentified models (ii) and (iii).

Suggested Citation

  • Xiaohong Chen & Haitian Xie, 2025. "Local Overidentification and Efficiency Gains in Modern Causal Inference and Data Combination," Cowles Foundation Discussion Papers 2467, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2467
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/2025-10/d2467.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.