IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/6268.html
   My bibliography  Save this paper

Subsampling confidence intervals for the autoregressive root

Author

Listed:
  • Wolf, Michael
  • Romano, Joseph P.

Abstract

In this paper, we propose a new method for constructing confidence intervals for the autoregressive parameter of an AR(I) model. Our method works when the parameter equals one, is close to one, or is far away from one and is therefore more general than previous procedures. The crux of the method is to recompute the OLS t-statistics for the AR(I) parameter on smaller blocks of the observed sequence, according to the subsampling approach of Politis and Romano (1994). Some simulation studies show good finite sample properties of our intervals.

Suggested Citation

  • Wolf, Michael & Romano, Joseph P., 1998. "Subsampling confidence intervals for the autoregressive root," DES - Working Papers. Statistics and Econometrics. WS 6268, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:6268
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/6268/ws987433.PDF?sequence=1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elliott, Graham & Stock, James H., 1994. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
    2. Politis, D. N. & Romano, Joseph P. & Wolf, Michael, 1997. "Subsampling for heteroskedastic time series," Journal of Econometrics, Elsevier, vol. 81(2), pages 281-317, December.
    3. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    4. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
    2. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    3. Wolf, Michael & Romano, Joseph P. & Politis, Dimitris N., 1999. "Subsampling, symmetrization, and robust interpolation," DES - Working Papers. Statistics and Econometrics. WS 6343, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Efstathios Paparoditis & Dimitris Politis, 2000. "Large-sample inference in the general AR(1) model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 487-509, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    2. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    3. Liu, Wei & Maynard, Alex, 2005. "Testing forward rate unbiasedness allowing for persistent regressors," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 613-628, December.
    4. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    5. Romano, Joseph P & Wolf, Michael, 2001. "Subsampling Intervals in Autoregressive Models with Linear Time Trend," Econometrica, Econometric Society, vol. 69(5), pages 1283-1314, September.
    6. Maynard, Alex & Shimotsu, Katsumi, 2009. "Covariance-Based Orthogonality Tests For Regressors With Unknown Persistence," Econometric Theory, Cambridge University Press, vol. 25(1), pages 63-116, February.
    7. Müller, Ulrich K. & Watson, Mark W., 2013. "Low-frequency robust cointegration testing," Journal of Econometrics, Elsevier, vol. 174(2), pages 66-81.
    8. Daniela Osterrieder & Daniel Ventosa-Santaulària & J. Eduardo Vera-Valdés, 2015. "Unbalanced Regressions and the Predictive Equation," CREATES Research Papers 2015-09, Department of Economics and Business Economics, Aarhus University.
    9. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    10. Avdis, Efstathios & Wachter, Jessica A., 2017. "Maximum likelihood estimation of the equity premium," Journal of Financial Economics, Elsevier, vol. 125(3), pages 589-609.
    11. Ren, Yu & Tu, Yundong & Yi, Yanping, 2019. "Balanced predictive regressions," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 118-142.
    12. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    13. Hyungsik R. Moon & Peter C.B. Phillips, 1999. "Maximum Likelihood Estimation in Panels with Incidental Trends," Cowles Foundation Discussion Papers 1246, Cowles Foundation for Research in Economics, Yale University.
    14. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    15. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    16. Zongwu Cai & Bingyi Jing & Xinbing Kong & Zhi Liu, 2017. "Nonparametric regression with nearly integrated regressors under long‐run dependence," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 118-138, February.
    17. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    18. Barbara Rossi, 2007. "Expectations hypotheses tests at Long Horizons," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 554-579, November.
    19. Moon, Hyungsik R. & Phillips, Peter C.B., 2000. "Estimation Of Autoregressive Roots Near Unity Using Panel Data," Econometric Theory, Cambridge University Press, vol. 16(6), pages 927-997, December.
    20. Elliott, Graham, 2011. "A control function approach for testing the usefulness of trending variables in forecast models and linear regression," Journal of Econometrics, Elsevier, vol. 164(1), pages 79-91, September.

    More about this item

    Keywords

    Autoregressive Time Series;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:6268. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.