IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/6517.html

Analyzing Strongly Periodic Series in the Frequency Domain: A Comparison of Alternative Approaches with Applications

Author

Listed:
  • Artis, Michael
  • Nachane, Dilip M
  • Hoffmann, Mathias
  • Clavel, Jose Garcia

Abstract

Strongly periodic series occur frequently in many disciplines. This paper reviews one specific approach to analyzing such series viz. the harmonic regression approach. In this paper, the five major methods suggested under this approach are critically reviewed and compared, and their empirical potential highlighted via two applications. The out-of-sample forecast comparisons are made using the Superior Predictive Ability test, which specifically guards against the perils of data snooping. Certain tentative conclusions are drawn regarding the relative forecasting ability of the different methods.

Suggested Citation

  • Artis, Michael & Nachane, Dilip M & Hoffmann, Mathias & Clavel, Jose Garcia, 2007. "Analyzing Strongly Periodic Series in the Frequency Domain: A Comparison of Alternative Approaches with Applications," CEPR Discussion Papers 6517, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:6517
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP6517
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    4. Peter Young, 1999. "Recursive and en-bloc approaches to signal extraction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(1), pages 103-128.
    5. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, January.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    8. Peter Reinhard Hansen, 2001. "An Unbiased and Powerful Test for Superior Predictive Ability," Working Papers 2001-06, Brown University, Department of Economics.
    9. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    10. Hannan, E J & Terrell, R D & Tuckwell, N E, 1970. "The Seasonal Adjustment of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(1), pages 24-52, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    2. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    3. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    4. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    5. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    6. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    7. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    8. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    9. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    10. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    11. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    12. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    13. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    14. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
    15. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    16. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2005. "Testing the significance of calendar effects," FRB Atlanta Working Paper 2005-02, Federal Reserve Bank of Atlanta.
    17. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    18. Shan Lu, 2019. "Testing the Predictive Ability of Corridor Implied Volatility Under GARCH Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(2), pages 129-168, June.
    19. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2021. "Forecasting the volatility of asset returns: The informational gains from option prices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 862-880.
    20. esposito, francesco paolo & cummins, mark, 2015. "Multiple hypothesis testing of market risk forecasting models," MPRA Paper 64986, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:6517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.