IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Weighting Distance Matrices Using Rank Correlations

Listed author(s):
  • Ilaria Lucrezia Amerise


  • Agostino Tarsitano


    (Dipartimento di Economia e Statistica, Università della Calabria)

Registered author(s):

    In a number of applications of multivariate analysis, the data matrix is not fully observed. Instead a set of distance matrices on the same entities is available. A reasonable strategy to construct a global distance matrix is to compute a weighted average of the partial distance matrices, provided that an appropriate system of weights can be defined. The Distatis method developed by Abdi et al. (2005) is a three-step procedure for computing the global distance matrix. An important aspect of that procedure is the computation of the vector correlation coefficient (RV) to measure the similarity between partial distance matrices. The RV coefficient is based on the Pearson product moment correlation coeffcient, which is highly prone to the effects of outliers. We are convinced that, in many measurable phenomena, the relationships between distances are far more likely to be ordinal than interval in nature, and it is therefore preferable to adopt an approach appropriate to ordinal data. The goal of our paper is to revise the system of weights of the Distatis procedure substituting the conventional Pearson coefficient with rank correlations that are less affected by errors of measurement, perturbation or presence of outliers in the data. In the light of our findings on real and simulated data sets, we recommend the use of a speci c coefficient of rank correlation to replace, where necessary, the conventional vector correlation.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: First version, 2012-12
    Download Restriction: no

    Paper provided by Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF in its series Working Papers with number 201209.

    in new window

    Length: 19 pages
    Date of creation: Dec 2012
    Handle: RePEc:clb:wpaper:201209
    Contact details of provider: Postal:
    Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania", Ponte Pietro Bucci, Cubo 0/C, I-87036 Arcavacata di Rende, CS, Italy

    Phone: +39 0984 492413
    Fax: +39 0984 492421
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Véronique Campbell & Pierre Legendre & François-Joseph Lapointe, 2009. "Assessing Congruence Among Ultrametric Distance Matrices," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 103-117, April.
    2. Vladimir Batagelj & Matevz Bren, 1995. "Comparing resemblance measures," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 73-90, March.
    3. Francis Cailliez, 1983. "The analytical solution of the additive constant problem," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 305-308, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:clb:wpaper:201209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giovanni Dodero)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.