IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2025s-30.html
   My bibliography  Save this paper

Optimal Binary Classification

Author

Listed:
  • Rachidi Kotchoni

Abstract

It is shown that the Mean Integrated Square Error (MISE) of a binary classifier is a weighted average of its probabilities of type I (α) and type II errors (β). This provides a foundation for minimizing a linear cost function consisting of a weighted average of α and β to design an optimal classifier. Such a cost function is shown to have the interpretation of a MISE of the classifier under a subjective probability distribution. We derive the closed-form expression of the optimal α for the mean test, provide an equation that can be solved numerically to find the optimal cutoff of the Probit classifier, and illustrate the relevance of the results by simulation. In general, the optimal α for a significance test is different from the conventional 0.05 or 0.01 and the optimal cut-off for probabilistic classifiers deviates from 0.5. Nous démontrons que l'erreur quadratique moyenne intégrée (EQMI) d'un classificateur binaire est une moyenne pondérée de ses probabilités d'erreurs de type I (α) et de type II (β). Ceci justifie la minimisation d’une fonction de coût linéaire, consistant en une moyenne pondérée de α et β, pour l’obtention d’un classificateur optimal. Une telle fonction de coût peut s’interpréter comme une EQMI du classificateur sous une distribution de probabilité subjective. Nous établissons l'expression analytique du α optimal pour le test de la moyenne, fournissons une équation résoluble numériquement pour la détermination du seuil optimal du classificateur Probit, et illustrons les résultats par simulation. En général, le α optimal pour un test de significativité est différent de 0,05 ou 0,01 utilisé conventionnellement, et le seuil optimal des classificateurs probabilistes est différent de 0,5.

Suggested Citation

  • Rachidi Kotchoni, 2025. "Optimal Binary Classification," CIRANO Working Papers 2025s-30, CIRANO.
  • Handle: RePEc:cir:cirwor:2025s-30
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2025s-30.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2025s-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.