IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimation de densité conditionnelle lorsque l'hypothèse de normalité est insatisfaisante

Listed author(s):
  • Julie Carreau
  • Yoshua Bengio
Registered author(s):

    We aim at modelling fat-tailed densities whose distributions are unknown but are potentially asymmetric. In this context, the standard normality assumption is not appropriate.In order to make as few distributional assumptions as possible, we use a non-parametric algorithm to model the center of the distribution. Density modelling becomes more difficult as we move further in the tail of the distribution since very few observations fall in the upper tail area. Hence we decide to use the generalized Pareto distribution (GPD) to model the tails of the distribution. The GPD can approximate finite, exponential or subexponential tails. The estimation of the parameters of the GPD is based solely on the extreme observations. An observation is defined as being extreme if it is greater than a given threshold. The main difficulty with GPD modelling is to determine an appropriate threshold. Nous cherchons à modéliser des densités dont la distribution est inconnue mais qui est asymétrique et présente des queues lourdes. Dans ce contexte, l'hypothèse de normalité n'est pas appropriée. Afin de maintenir au minimum le nombre d'hypothèses distributionnelles, nous utilisons une méthode non paramétrique pour modéliser le centre de la distribution. La modélisation est plus difficile dans les queues de la distribution puisque peu d'observations s'y trouvent. Nous nous proposons donc d'utiliser la Pareto généralisée (GPD) pour modéliser les queues de la distribution. La GPD permet d'approximer tous les types de queues de distributions (qu'elles soient finies, exponentielles ou sous-exponentielles). L'estimation des paramètres de la GPD est uniquement basée sur les observations extrêmes. Une observation est définie comme étant extrême si elle dépasse un seuil donné. La principale difficulté de la modélisation avec la GPD réside dans le choix d'un seuil adéquat.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by CIRANO in its series CIRANO Working Papers with number 2004s-31.

    in new window

    Length: 30 pages
    Date of creation: 01 May 2004
    Handle: RePEc:cir:cirwor:2004s-31
    Contact details of provider: Postal:
    1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8

    Phone: (514) 985-4000
    Fax: (514) 985-4039
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Phillipe Lambert & J. K. Lindsey, 1999. "Analysing Financial Returns by Using Regression Models Based on Non-Symmetric Stable Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 409-424.
    2. Beirlant, Jan & Goegebeur, Yuri, 2003. "Regression with response distributions of Pareto-type," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 595-619, April.
    3. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2004s-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.