IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Properties of Estimates of Daily GARCH Parameters Basaed on Intra-Day Observations

  • John Galbraith
  • Victoria Zinde-Walsh

We consider estimates of the parameters of GARCH models of daily financial returns, obtained using intra-day (high-frequency) returns data to estimate the daily conditional volatility.Two potential bases for estimation are considered. One uses aggregation of high-frequency Quasi- ML estimates, using aggregation results of Drost and Nijman (1993). The other uses the integrated volatility of Andersen and Bollerslev (1998), and obtains coefficients from a model estimated by LAD or OLS, in the former case providing consistency and asymptotic normality in some cases where moments of the volatility estimation error may not exist. In particular, we consider estimation in this way of an ARCH approximation, and obtain GARCH parameters by a method related to that of Galbraith and Zinde-Walsh (1997) for ARMA processes. We offer some simulation evidence on small-sample performance, and characterize the gains relative to standard quasi-ML estimates based on daily data alone. Nous considérons les estimés des paramètres des modèles GARCH pour les rendements financiers journaliers, qui sont obtenus à l'aide des données intra-jour (haute fréquence) pour estimer la volatilité journalière. Deux bases potentielles sont evaluées. La première est fondée sur l'aggrégation des estimés quasi-vraisemblance-maximale, en profitant des résultats de Drost et Nijman (1993). L'autre utilise la volatilité integrée de Andersen et Bollerslev (1998), et obtient les coefficients d'un modèle estimé par LAD ou MCO; la première méthode résiste mieux à la possibilité de non-existence des moments de l'erreur en estimation de volatilité. En particulier, nous considérons l'estimation par approximation ARCH, et nous obtenons les paramètres par une méthode liée à celle de Galbraith et Zinde-Walsh (1997) pour les processus ARMA. Nous offrons des résultats provenant des simulations sur la performance des méthodes en échantillons finis, et nous décrivons les atouts relatifs à l'estimation standard de quasi-VM basée uniquement sur les données journalières.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2001s-15.

in new window

Length: 28 pages
Date of creation: 01 Feb 2001
Date of revision:
Handle: RePEc:cir:cirwor:2001s-15
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(05), pages 912-951, October.
  2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  3. Drost, F.C. & Werker, B.J.M., 1994. "Closing the GARCH gap : Continuous time GARCH modeling," Discussion Paper 1994-2, Tilburg University, Center for Economic Research.
  4. Nour Meddahi, 2000. "Temporal Aggregation of Volatility Models," Econometric Society World Congress 2000 Contributed Papers 1903, Econometric Society.
  5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  6. Daniel B. Nelson & Dean P. Foster, 1992. "Filtering and Forecasting with Misspecified Arch Models II: Making the Right Forecast with the Wrong Model," NBER Technical Working Papers 0132, National Bureau of Economic Research, Inc.
  7. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  8. Drost, F.C. & Nijman, T.E., 1990. "Temporal Aggregation Of Garch Processes," Papers 9066, Tilburg - Center for Economic Research.
  9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
  10. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  11. John M. Maheu & Thomas H. McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
  12. Werker, B.J.M. & Drost, F.C., 1996. "Closing the GARCH gap : Continuous time GARCH modeling," Other publications TiSEM c3d29817-403a-4ad1-9295-8, Tilburg University, School of Economics and Management.
  13. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  14. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  15. Bollen, B. & Inder, B., 1998. "A General Volatility Framework and the Generalised Historical Volatility Estimator," Monash Econometrics and Business Statistics Working Papers 10/98, Monash University, Department of Econometrics and Business Statistics.
  16. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(01), pages 3-22, February.
  17. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  18. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-15. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.