IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt0488k9kz.html
   My bibliography  Save this paper

Development of an Empirical-Mechanistic Model of Overlay Crack Progression using Data from the Washington State PMS Database

Author

Listed:
  • Nakat, Z.
  • Madanat, S.
  • Farshidi, F.
  • Harvey, J.

Abstract

This is the second of two reports that present fatigue cracking performance models for asphalt concrete overlays placed on existing asphalt concrete pavement. The models were developed from the pavement management system (PMS) database of the Washington State Department of Transportation (WSDOT). The database included existing pavement structure, overlay thickness and type, truck traffic, and observed percent of the wheelpath cracked from annual condition surveys. Climate data was developed by the UCPRC to augment the WSDOT data. This report presents a model for crack propagation, starting from crack initiation, which was defined as 5 percent of the wheelpath with longitudinal cracking. The combined initiation and propagation models were included in a spreadsheet calculator which was used to perform an analysis of the sensitivity of crack initiation and propagation to the input variables. The models are extremely useful for predicting pavement performance. For use in California they will need recalibration of the coefficients to reflect differences in WSDOT and California practice, primarily the use of thicker overlays in California, placement of overlays at much more advanced states of cracking in the existing pavement, and possible differences in routine maintenance activities.

Suggested Citation

  • Nakat, Z. & Madanat, S. & Farshidi, F. & Harvey, J., 2006. "Development of an Empirical-Mechanistic Model of Overlay Crack Progression using Data from the Washington State PMS Database," Institute of Transportation Studies, Working Paper Series qt0488k9kz, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt0488k9kz
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0488k9kz.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamal Golabi & Ram B. Kulkarni & George B. Way, 1982. "A Statewide Pavement Management System," Interfaces, INFORMS, vol. 12(6), pages 5-21, December.
    2. Prozzi, J A & Madanat, S M, 2004. "Development of Pavement Performance Models by Combining Experimental and Field Data," University of California Transportation Center, Working Papers qt6cf8v5cw, University of California Transportation Center.
    3. Kamal Golabi & Richard Shepard, 1997. "Pontis: A System for Maintenance Optimization and Improvement of US Bridge Networks," Interfaces, INFORMS, vol. 27(1), pages 71-88, February.
    4. Madanat, S M & Nakat, Ziad El & Sathaye, Nakul, 2005. "Development of Empirical-Mechanistic Pavement Performance Models using Data from the Washington State PMS Database," Institute of Transportation Studies, Working Paper Series qt1v67j54c, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durango-Cohen, Pablo L. & Madanat, Samer M., 2008. "Optimization of inspection and maintenance decisions for infrastructure facilities under performance model uncertainty: A quasi-Bayes approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1074-1085, October.
    2. Yingnan Yang & Hongming Xie, 2021. "Determination of Optimal MR&R Strategy and Inspection Intervals to Support Infrastructure Maintenance Decision Making," Sustainability, MDPI, vol. 13(5), pages 1-10, March.
    3. Kuhn, Kenneth D. & Madanat, Samer M., 2005. "Model Uncertainty and the Management of a System of Infrastructure Facilities," University of California Transportation Center, Working Papers qt6c84b9b4, University of California Transportation Center.
    4. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    5. Pekka Mild & Ahti Salo, 2009. "Combining a Multiattribute Value Function with an Optimization Model: An Application to Dynamic Resource Allocation for Infrastructure Maintenance," Decision Analysis, INFORMS, vol. 6(3), pages 139-152, September.
    6. Kobayashi, K. & Kaito, K. & Lethanh, N., 2014. "A competing Markov model for cracking prediction on civil structures," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 345-362.
    7. David Llopis-Castelló & Tatiana García-Segura & Laura Montalbán-Domingo & Amalia Sanz-Benlloch & Eugenio Pellicer, 2020. "Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    8. Lee, Jinwoo & Madanat, Samer, 2015. "A joint bottom-up solution methodology for system-level pavement rehabilitation and reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 106-122.
    9. Gabriel Bazi & John Khoury & F. Jordan Srour, 2017. "Integrating Data Collection Optimization into Pavement Management Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 135-146, June.
    10. A Brint & J Bridgeman & M Black, 2009. "The rise, current position and future direction of asset management in utility industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 106-113, May.
    11. Seyedshohadaie, S. Reza & Damnjanovic, Ivan & Butenko, Sergiy, 2010. "Risk-based maintenance and rehabilitation decisions for transportation infrastructure networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 236-248, May.
    12. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Mohit Tawarmalani & Yanjun Li, 2011. "Multi‐period maintenance scheduling of tree networks with minimum flow disruption," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(5), pages 507-530, August.
    14. Lee, Charles & Nokes, William A. & Harvey, John T., 2008. "Alligator Cracking Performance and Life-Cycle Cost Analysis of Pavement Preservation Treatments," Institute of Transportation Studies, Working Paper Series qt893562th, Institute of Transportation Studies, UC Davis.
    15. Bian, Zheyong & Bai, Yun & Douglas, W. Scott & Maher, Ali & Liu, Xiang, 2022. "Multi-year planning for optimal navigation channel dredging and dredged material management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    16. Xinhua Mao & Changwei Yuan & Jiahua Gan, 2019. "Incorporating Dynamic Traffic Distribution into Pavement Maintenance Optimization Model," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
    17. Yu Fang & Lijun Sun, 2019. "Developing A Semi-Markov Process Model for Bridge Deterioration Prediction in Shanghai," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    18. Farshidi, Frank & Harvey, John T., 2008. "Development of Thin HMA Overlay Crack Initiation and Progression Probabilistic Models," Institute of Transportation Studies, Working Paper Series qt2x273750, Institute of Transportation Studies, UC Davis.
    19. Sathaye, Nakul & Madanat, Samer, 2012. "A bottom-up optimal pavement resurfacing solution approach for large-scale networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 520-528.
    20. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt0488k9kz. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.