IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v42y2008i8p1074-1085.html
   My bibliography  Save this article

Optimization of inspection and maintenance decisions for infrastructure facilities under performance model uncertainty: A quasi-Bayes approach

Author

Listed:
  • Durango-Cohen, Pablo L.
  • Madanat, Samer M.

Abstract

We present an optimization model to find joint inspection and maintenance policies for infrastructure facilities under performance model uncertainty. The objective in the formulation is to minimize the total expected social cost of managing facilities over a finite planning horizon. As in recent optimization models, performance model uncertainty is accounted for by representing facility deterioration as a mixture of known models taken from a finite set. The mixture proportions are assumed to be continuous random variables, with probability densities that are updated over time. In this paper, we relax the assumptions of fixed and error-free inspections. We present a parametric study to analyze the effect of initial performance model uncertainty and bias on the expected total cost of managing a facility. The main observation is that reducing the initial variance in model uncertainty may be more important than reducing the initial bias. Our study also shows that cost savings can result from relaxing the constraint of a fixed inspection schedule.

Suggested Citation

  • Durango-Cohen, Pablo L. & Madanat, Samer M., 2008. "Optimization of inspection and maintenance decisions for infrastructure facilities under performance model uncertainty: A quasi-Bayes approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1074-1085, October.
  • Handle: RePEc:eee:transa:v:42:y:2008:i:8:p:1074-1085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(08)00078-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuwei & Madanat, Samer, 2002. "A steady-state solution for the optimal pavement resurfacing problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 525-535, July.
    2. Samer Madanat & Moshe Ben-Akiva, 1994. "Optimal Inspection and Repair Policies for Infrastructure Facilities," Transportation Science, INFORMS, vol. 28(1), pages 55-62, February.
    3. Suzuki, Yoshinori & Pautsch, Gregory R., 2005. "A vehicle replacement policy for motor carriers in an unsteady economy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 463-480, June.
    4. Kuhn, Kenneth D. & Madanat, Samer M., 2005. "Model Uncertainty and the Management of a System of Infrastructure Facilities," University of California Transportation Center, Working Papers qt6c84b9b4, University of California Transportation Center.
    5. Ouyang, Yanfeng & Madanat, Samer, 2004. "Optimal scheduling of rehabilitation activities for multiple pavement facilities: exact and approximate solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 347-365, June.
    6. Madanat, S M & Park, Sejung & Kuhn, K D, 2006. "Adaptive Optimization and Systematic Probing of Infrastructure System Maintenance Policies under Model Uncertainty," University of California Transportation Center, Working Papers qt4fb7k5rc, University of California Transportation Center.
    7. Tsunokawa, Koji & Schofer, Joseph L., 1994. "Trend curve optimal control model for highway pavement maintenance: Case study and evaluation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(2), pages 151-166, March.
    8. Durango, Pablo L. & Madanat, Samer M., 2002. "Optimal maintenance and repair policies in infrastructure management under uncertain facility deterioration rates: an adaptive control approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 763-778, November.
    9. Gendreau, Michel & Soriano, Patrick, 1998. "Airport pavement management systems: an appraisal of existing methodologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(3), pages 197-214, April.
    10. Humplick, Frannie, 1992. "Highway pavement distress evaluation: Modeling measurement error," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 135-154, April.
    11. Kamal Golabi & Ram B. Kulkarni & George B. Way, 1982. "A Statewide Pavement Management System," Interfaces, INFORMS, vol. 12(6), pages 5-21, December.
    12. John J. McCall, 1965. "Maintenance Policies for Stochastically Failing Equipment: A Survey," Management Science, INFORMS, vol. 11(5), pages 493-524, March.
    13. Cyrus Derman, 1962. "On Sequential Decisions and Markov Chains," Management Science, INFORMS, vol. 9(1), pages 16-24, October.
    14. Morton Klein, 1962. "Inspection--Maintenance--Replacement Schedules Under Markovian Deterioration," Management Science, INFORMS, vol. 9(1), pages 25-32, October.
    15. Kamal Golabi & Richard Shepard, 1997. "Pontis: A System for Maintenance Optimization and Improvement of US Bridge Networks," Interfaces, INFORMS, vol. 27(1), pages 71-88, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Zhe Sun & Tiantian Chen & Xiaolin Meng & Yan Bao & Liangliang Hu & Ruirui Zhao, 2023. "A Critical Review for Trustworthy and Explainable Structural Health Monitoring and Risk Prognosis of Bridges with Human-In-The-Loop," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Wenfei Bai & Quanxin Sun & Futian Wang & Rengkui Liu & Ru An, 2019. "A segmental evaluation model for determining residual rail service life based on a discrete-state conditional probabilistic method," Journal of Risk and Reliability, , vol. 233(2), pages 211-225, April.
    4. Sevcíková, Hana & Raftery, Adrian E. & Waddell, Paul A., 2011. "Uncertain benefits: Application of Bayesian melding to the Alaskan Way Viaduct in Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 540-553, July.
    5. Qiao, Yu & Saeed, Tariq Usman & Chen, Sikai & Nateghi, Roshanak & Labi, Samuel, 2018. "Acquiring insights into infrastructure repair policy using discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 491-508.
    6. Yingnan Yang & Hongming Xie, 2021. "Determination of Optimal MR&R Strategy and Inspection Intervals to Support Infrastructure Maintenance Decision Making," Sustainability, MDPI, vol. 13(5), pages 1-10, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyedshohadaie, S. Reza & Damnjanovic, Ivan & Butenko, Sergiy, 2010. "Risk-based maintenance and rehabilitation decisions for transportation infrastructure networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 236-248, May.
    2. Lee, Jinwoo & Madanat, Samer, 2015. "A joint bottom-up solution methodology for system-level pavement rehabilitation and reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 106-122.
    3. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
    4. Zhang, Le & Fu, Liangliang & Gu, Weihua & Ouyang, Yanfeng & Hu, Yaohua, 2017. "A general iterative approach for the system-level joint optimization of pavement maintenance, rehabilitation, and reconstruction planning," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 378-400.
    5. Durango-Cohen, Pablo L., 2007. "A time series analysis framework for transportation infrastructure management," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 493-505, June.
    6. Ouyang, Yanfeng & Madanat, Samer, 2006. "An analytical solution for the finite-horizon pavement resurfacing planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 767-778, November.
    7. Xinhua Mao & Changwei Yuan & Jiahua Gan, 2019. "Incorporating Dynamic Traffic Distribution into Pavement Maintenance Optimization Model," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
    8. Sathaye, Nakul & Madanat, Samer, 2012. "A bottom-up optimal pavement resurfacing solution approach for large-scale networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 520-528.
    9. Lee, Jinwoo & Madanat, Samer, 2014. "Joint optimization of pavement design, resurfacing and maintenance strategies with history-dependent deterioration models," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 141-153.
    10. Zhi-Chun Li & Dian Sheng, 2014. "Pavement rehabilitation scheduling and toll pricing under different regulatory regimes," Annals of Operations Research, Springer, vol. 217(1), pages 337-355, June.
    11. Gu, Weihua & Ouyang, Yanfeng & Madanat, Samer, 2012. "Joint optimization of pavement maintenance and resurfacing planning," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 511-519.
    12. Yingnan Yang & Hongming Xie, 2021. "Determination of Optimal MR&R Strategy and Inspection Intervals to Support Infrastructure Maintenance Decision Making," Sustainability, MDPI, vol. 13(5), pages 1-10, March.
    13. Qiao, Julie Yu & Du, Runjia & Labi, Samuel & Fricker, Jon D. & Sinha, Kumares C., 2021. "Policy implications of standalone timing versus holistic timing of infrastructure interventions: Findings based on pavement surface roughness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 79-99.
    14. Charles-Antoine Robelin & Samer M. Madanat, 2008. "Reliability-Based System-Level Optimization of Bridge Maintenance and Replacement Decisions," Transportation Science, INFORMS, vol. 42(4), pages 508-513, November.
    15. Zhang, Xueqing & Gao, Hui, 2012. "Road maintenance optimization through a discrete-time semi-Markov decision process," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 110-119.
    16. Rafic Faddoul & Abdul-Hamid Soubra & Wassim Raphael & Alaa Chateauneuf, 2013. "Extension of dynamic programming models for management optimization from single structure to multi-structures level," Post-Print hal-01006860, HAL.
    17. Mishalani, Rabi G. & Gong, Liying, 2009. "Optimal infrastructure condition sampling over space and time for maintenance decision-making under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 311-324, March.
    18. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    19. Kobayashi, Kiyoshi & Kaito, Kiyoyuki & Lethanh, Nam, 2012. "A statistical deterioration forecasting method using hidden Markov model for infrastructure management," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 544-561.
    20. Lu, Zhaoyang & Meng, Qiang, 2018. "Impacts of pavement deterioration and maintenance cost on Pareto-efficient contracts for highway franchising," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:42:y:2008:i:8:p:1074-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.