IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9717-d448784.html
   My bibliography  Save this article

Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration

Author

Listed:
  • David Llopis-Castelló

    (Highway Engineering Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Tatiana García-Segura

    (Construction Project Management Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Laura Montalbán-Domingo

    (Construction Project Management Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Amalia Sanz-Benlloch

    (Construction Project Management Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Eugenio Pellicer

    (Construction Project Management Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

Various studies have been recently conducted to predict pavement condition, but most of them were developed in a certain region where climate conditions were kept constant and/or the research focused on specific road distresses using single parameters. Thus, this research aimed at determining the influence of pavement structure, traffic demand, and climate factors on urban flexible pavement condition over time. To do this, the Structural Number was used as an indicator of the pavement capacity, various traffic and climate variables were defined, and the Pavement Condition Index was used as a surrogate measure of pavement condition. The analysis was focused on the calibration of regression models by using the K-Fold Cross Validation technique. As a result, for a given pavement age, pavement condition worsens as the Equivalent Single Axle Load and the Annual Average Height of Snow increased. Likewise, a cold Annual Average Temperature (5–15 °C) and a large Annual Average Range of Temperature (20–30 °C) encourage a more aggressive pavement deterioration process. By contrast, warm climates with low temperature variations, which are associated with low precipitation, lead to a longer pavement service life. Additionally, a new classification of climate zones was proposed on the basis of the weather influence on pavement deterioration.

Suggested Citation

  • David Llopis-Castelló & Tatiana García-Segura & Laura Montalbán-Domingo & Amalia Sanz-Benlloch & Eugenio Pellicer, 2020. "Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9717-:d:448784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. -, 2003. "Traffic congestion: the problem and how to deal with it," Cuadernos de la CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37898 edited by Eclac, March.
    2. Giuseppe Loprencipe & Antonio Pantuso & Paola Di Mascio, 2017. "Sustainable Pavement Management System in Urban Areas Considering the Vehicle Operating Costs," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    3. Prozzi, J A & Madanat, S M, 2004. "Development of Pavement Performance Models by Combining Experimental and Field Data," University of California Transportation Center, Working Papers qt6cf8v5cw, University of California Transportation Center.
    4. Madanat, S M & Nakat, Ziad El & Sathaye, Nakul, 2005. "Development of Empirical-Mechanistic Pavement Performance Models using Data from the Washington State PMS Database," Institute of Transportation Studies, Working Paper Series qt1v67j54c, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Viktors Haritonovs & Florian Gschösser, 2021. "Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    2. Brian Charles Barr & Hrund Ólöf Andradóttir & Throstur Thorsteinsson & Sigurður Erlingsson, 2021. "Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    3. Ayhan Oner Yucel, 2023. "An Evaluation of the Cracking Resistance of Steel- and Glass-Fiber-Reinforced Asphalt Mixtures Produced at Different Temperatures," Sustainability, MDPI, vol. 15(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakat, Z. & Madanat, S. & Farshidi, F. & Harvey, J., 2006. "Development of an Empirical-Mechanistic Model of Overlay Crack Progression using Data from the Washington State PMS Database," Institute of Transportation Studies, Working Paper Series qt0488k9kz, Institute of Transportation Studies, UC Davis.
    2. Takumi Asada & Tran Vinh Ha & Mikiharu Arimura & Shuichi Kameyama, 2022. "A Novel Approach for Urban Road Network Maintenance Plans Using Spatial Autocorrelation Analysis and Roadside Conditions: A Case Study of Muroran City, Japan," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    3. Paola Di Mascio & Alessio Antonini & Piero Narciso & Antonio Greto & Marco Cipriani & Laura Moretti, 2021. "Proposal and Implementation of a Heliport Pavement Management System: Technical and Economic Comparison of Maintenance Strategies," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
    4. Nader Karballaeezadeh & Farah Zaremotekhases & Shahaboddin Shamshirband & Amir Mosavi & Narjes Nabipour & Peter Csiba & Annamária R. Várkonyi-Kóczy, 2020. "Intelligent Road Inspection with Advanced Machine Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance Systems," Energies, MDPI, vol. 13(7), pages 1-22, April.
    5. Lee, Charles & Nokes, William A. & Harvey, John T., 2008. "Alligator Cracking Performance and Life-Cycle Cost Analysis of Pavement Preservation Treatments," Institute of Transportation Studies, Working Paper Series qt893562th, Institute of Transportation Studies, UC Davis.
    6. Farshidi, Frank & Harvey, John T., 2008. "Development of Thin HMA Overlay Crack Initiation and Progression Probabilistic Models," Institute of Transportation Studies, Working Paper Series qt2x273750, Institute of Transportation Studies, UC Davis.
    7. Chidambaram, Bhuvanachithra & Janssen, Marco A. & Rommel, Jens & Zikos, Dimitrios, 2014. "Commuters’ mode choice as a coordination problem: A framed field experiment on traffic policy in Hyderabad, India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 9-22.
    8. Ciro Caliendo & Maurizio Guida & Emiliana Pepe, 2015. "Seemingly Unrelated Regression Equations for Developing a Pavement Performance Model," Modern Applied Science, Canadian Center of Science and Education, vol. 9(13), pages 199-199, December.
    9. Ali A. Hatoum & Jamal M. Khatib & Firas Barraj & Adel Elkordi, 2022. "Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    10. Anani, Shadi B. & Madanat, Samer M., 2010. "Highway maintenance marginal costs: What if the fourth power assumption is not valid?," Transport Policy, Elsevier, vol. 17(6), pages 486-495, November.
    11. Gungor, Osman Erman & Petit, Antoine Michel Alain & Qiu, Junjie & Zhao, Jingnan & Meidani, Hadi & Wang, Hao & Ouyang, Yanfeng & Al-Qadi, Imad L. & Mann, Justan, 2019. "Development of an overweight vehicle permit fee structure for Illinois," Transport Policy, Elsevier, vol. 82(C), pages 26-35.
    12. Dunja Perić & Gyuhyeong Goh & Javad Saeidaskari & Arash Saeidi Rashk Olia & Pooyan Ayar, 2022. "Development of Prediction Models for Performance of Flexible Pavements in Kansas with Emphasis on the Effects of Subgrade and Unbound Layers," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    13. Chu, Chih-Yuan & Durango-Cohen, Pablo L., 2008. "Estimation of dynamic performance models for transportation infrastructure using panel data," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 57-81, January.
    14. Paola Di Mascio & Gaetano Fusco & Giorgio Grappasonni & Laura Moretti & Antonella Ragnoli, 2018. "Geometrical and Functional Criteria as a Methodological Approach to Implement a New Cycle Path in an Existing Urban Road Network: A Case Study in Rome," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    15. Shong-Loong Chen & Chih-Hsien Lin & Chao-Wei Tang & Liang-Pin Chu & Chiu-Kuei Cheng, 2020. "Research on the International Roughness Index Threshold of Road Rehabilitation in Metropolitan Areas: A Case Study in Taipei City," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    16. Dae Young Kim & Seokho Chi & Janghwan Kim, 2018. "Selecting Network-Level Project Sections for Sustainable Pavement Management in Texas," Sustainability, MDPI, vol. 10(3), pages 1-10, March.
    17. Antonio Pantuso & Giuseppe Loprencipe & Guido Bonin & Bagdat Burkhanbaiuly Teltayev, 2019. "Analysis of Pavement Condition Survey Data for Effective Implementation of a Network Level Pavement Management Program for Kazakhstan," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    18. Marco Montoya-Alcaraz & Alejandro Mungaray-Moctezuma & Leonel García, 2019. "Sustainable Road Maintenance Planning in Developing Countries Based on Pavement Management Systems: Case Study in Baja California, México," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    19. Neil Murray & Heike Link, 2020. "A Duration Approach for Estimating the Marginal Renewal Cost at German Motorways," Discussion Papers of DIW Berlin 1898, DIW Berlin, German Institute for Economic Research.
    20. Saad Issa Sarsam, 2019. "Assessment of the Deterioration Model for Asphalt Concrete Pavement," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 9(7), pages 71-80, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9717-:d:448784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.